Table of Contents
International Journal of Evolutionary Biology
Volume 2011 (2011), Article ID 689254, 9 pages
http://dx.doi.org/10.4061/2011/689254
Review Article

Male-Male Competition as a Force in Evolutionary Diversification: Evidence in Haplochromine Cichlid Fish

1Behavioural Biology Research Group, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
2Section of Integrative Biology, The University of Texas at Austin, 1 University Station-C0930, Austin, TX 78712, USA

Received 23 December 2010; Revised 2 April 2011; Accepted 3 May 2011

Academic Editor: Martin J. Genner

Copyright © 2011 Peter D. Dijkstra and Ton G. G. Groothuis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. D. Kocher, “Adaptive evolution and explosive speciation: the cichlid fish model,” Nature Reviews Genetics, vol. 5, no. 4, pp. 288–298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Genner and G. F. Turner, “The mbuna cichlids of Lake Malawi: a model for rapid speciation and adaptive radiation,” Fish and Fisheries, vol. 6, no. 1, pp. 1–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Salzburger, “The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes,” Molecular Ecology, vol. 18, no. 2, pp. 169–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Seehausen, “The sequence of events along a "speciation transect" in the Lake Victoria cichlid fish Pundamilia,” in Speciation and Ecology, R. Butlin, D. Schluter, and J. R. Bridle, Eds., pp. 155–176, Cambridge University Press, Cambridge, UK, 2009. View at Google Scholar
  5. P. N. Reinthal, “The feeding habits of a group of herbivorous rock-dwelling cichlid fishes (Cichlidae: Perciformes) from Lake Malawi, Africa,” Environmental Biology of Fishes, vol. 27, no. 3, pp. 215–233, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Allender, O. Seehausen, M. E. Knight, G. F. Turner, and N. Maclean, “Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14074–14079, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Seehausen, “Explosive speciation rates and unusual species richness in haplochromine cichlid fishes: effects of sexual selection,” Advances in Ecological Research, vol. 31, pp. 237–274, 2000. View at Google Scholar · View at Scopus
  8. M. E. Maan, O. Seehausen, L. Söderberg et al., “Intraspecific sexual selection on a speciation trait, male coloration, in the Lake Victoria cichlid Pundamilia nyererei,” Proceedings of the Royal Society B, vol. 271, no. 1556, pp. 2445–2452, 2004. View at Publisher · View at Google Scholar
  9. O. Seehausen, J. J. M. van Alphen, and F. Witte, “Cichlid fish diversity threatened by eutrophication that curbs sexual selection,” Science, vol. 277, no. 5333, pp. 1808–1811, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Parker and I. Kornfield, “Polygynandry in Pseudotropheus zebra, a cichlid fish from Lake Malawi,” Environmental Biology of Fishes, vol. 47, no. 4, pp. 345–352, 1996. View at Google Scholar · View at Scopus
  11. K. R. McKaye, S. M. Louda, and J. R. Stauffer Jr., “Bower size and male reproductive success in a cichlid fish lek,” American Naturalist, vol. 135, no. 5, pp. 597–613, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. P. D. Dijkstra, E. M. van der Zee, and T. G. G. Groothuis, “Territory quality affects female preference in a Lake Victoria cichlid fish,” Behavioral Ecology and Sociobiology, vol. 62, no. 5, pp. 747–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Seehausen and D. Schluter, “Male-male competition and nuptial-colour displacement as a diversifying force in Lake Victoria cichlid fishes,” Proceedings of the Royal Society B, vol. 271, no. 1546, pp. 1345–1353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. O. K. Mikami, M. Kohda, and M. Kawata, “A new hypothesis for species coexistence: male-male repulsion promotes coexistence of competing species,” Population Ecology, vol. 46, no. 2, pp. 213–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. S. van Doorn, U. Dieckmann, and F. J. Weissing, “Sympatric speciation by sexual selection: a critical reevaluation,” American Naturalist, vol. 163, no. 5, pp. 709–725, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. G. F. Grether, N. Losin, C. N. Anderson, and K. Okamoto, “The role of interspecific interference competition in character displacement and the evolution of competitor recognition,” Biological Reviews, vol. 84, no. 4, pp. 617–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. A. Young, J. M. Whitman, and G. F. Turner, “Secondary contact during adaptive radiation: a community matrix for Lake Malawi cichlids,” Journal of Evolutionary Biology, vol. 22, no. 4, pp. 882–889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. I. Bolnick, “Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks,” Evolution, vol. 58, no. 3, pp. 608–618, 2004. View at Google Scholar · View at Scopus
  19. J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates, Sunderland, UK, 2004.
  20. D. Schluter, The Ecology of Adaptive Radiation, Oxford University Press, Oxford, UK, 2000.
  21. D. C. Adams, “Character displacement via aggressive interference in appalachian salamanders,” Ecology, vol. 85, no. 10, pp. 2664–2670, 2004. View at Google Scholar · View at Scopus
  22. K. S. Peiman and B. W. Robinson, “Heterospecific aggression and adaptive divergence in brook stickleback (Culaea inconstans),” Evolution, vol. 61, no. 6, pp. 1327–1338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Lorenz, “The function of colour in coral reef fishes,” Proceedings of the Royal Institute of Great Britain, vol. 39, pp. 282–296, 1962. View at Google Scholar
  24. K. Lorenz, On Aggression, Harcourt Brace, New York, NY, USA, 1966.
  25. R. V. Alatalo, L. Gustafsson, and A. Lundberg, “Male coloration and species recognition in sympatric flycatchers,” Proceedings of the Royal Society B, vol. 256, no. 1346, pp. 113–118, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Tynkkynen, M. J. Rantala, and J. Suhonen, “Interspecific aggression and character displacement in the damselfly Calopterix splendens,” Journal of Evolutionary Biology, vol. 17, no. 4, pp. 759–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Animal Behaviour, vol. 71, no. 2, pp. 299–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. N. Anderson and G. F. Grether, “Interspecific aggression and character displacement of competitor recognition in Hetaerina damselflies,” Proceedings of the Royal Society B, vol. 277, no. 1681, pp. 549–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Berglund, A. Bisazza, and A. Pilastro, “Armaments and ornaments: an evolutionary explanation of traits of dual utility,” Biological Journal of the Linnean Society, vol. 58, no. 4, pp. 385–399, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Higashi, G. Takimoto, and N. Yamamura, “Sympatric speciation by sexual selection,” Nature, vol. 402, no. 6761, pp. 523–526, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Kirkpatrick and S. L. Nuismer, “Sexual selection can constrain sympatric speciation,” Proceedings of the Royal Society B, vol. 271, no. 1540, pp. 687–693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. Arnegard and A. S. Kondrashov, “Sympatric speciation by sexual selection alone is unlikely,” Evolution, vol. 58, no. 2, pp. 222–237, 2004. View at Google Scholar · View at Scopus
  33. R. Lande, O. Seehausen, and J. J. M. van Alphen, “Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish,” Genetica, vol. 112-113, pp. 435–443, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. C. R. Almeida and F. V. de Abreu, “Dynamical instabilities lead to sympatric speciation,” Evolutionary Ecology Research, vol. 5, no. 5, pp. 739–757, 2003. View at Google Scholar · View at Scopus
  35. M. Andersson, Sexual Selection, Princeton University Press, Princeton, NJ, USA, 1994.
  36. M. Kohda, “Coexistence of permanently territorial cichlids of the genus Petrochromis through male-mating attack,” Environmental Biology of Fishes, vol. 52, no. 1–3, pp. 231–242, 1998. View at Google Scholar · View at Scopus
  37. G. F. Turner, O. Seehausen, M. E. Knight, C. J. Allender, and R. L. Robinson, “How many species of cichlid fishes are there in African lakes?” Molecular Ecology, vol. 10, no. 3, pp. 793–806, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. A. C. Marsh and A. J. Ribbink, “Feeding-site utilization in three sympatric species of Petrotilapia (Pisces, Cichlidae) from Lake Malawi,” Biological Journal of the Linnean Society, vol. 25, no. 4, pp. 331–338, 1985. View at Google Scholar · View at Scopus
  39. E. Hert, “Factors in habitat partitioning in Pseudotropheus aurora (Pisces: Cichlidae), an introduced species to a species-rich community of Lake Malawi,” Journal of Fish Biology, vol. 36, no. 6, pp. 853–865, 1990. View at Google Scholar · View at Scopus
  40. N. H. Owen-Ashley and L. K. Butler, “Androgens, interspecific competition and species replacement in hybridizing warblers,” Biology Letters, vol. 271, pp. S498–S500, 2004. View at Google Scholar · View at Scopus
  41. M. J. Pauers, J. M. Kapfer, C. E. Fendos, and C. S. Berg, “Aggressive biases towards similarly coloured males in Lake Malawi cichlid fishes,” Biology Letters, vol. 4, no. 2, pp. 156–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. Genner, G. F. Turner, and S. J. Hawkins, “Resource control by territorial male cichlid fish in Lake Malawi,” Journal of Animal Ecology, vol. 68, no. 3, pp. 522–529, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. K. R. McKaye, “Sexual selection and the evolution of the cichlid fishes of Lake Malawi, Africa,” in Cichlid Fishes: Behaviour, Ecology, and Evolution, M. H. A. Keenleyside, Ed., pp. 241–257, Chapman & Hall, New York, NY, USA, 1991. View at Google Scholar
  44. M. Plenderleith, Reproductive isolation, mate preference and aggression in Lake Malawi cichlid fish, Ph.D. thesis, University of Hull, Hull, UK, 2008.
  45. A. J. Ribbink, B. A. Marsh, A. C. Marsh, A. C. Ribbink, and B. J. Sharp, “A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi,” South African Journal of Zoology, vol. 18, no. 3, pp. 149–310, 1983. View at Google Scholar · View at Scopus
  46. P. D. Dijkstra, O. Seehausen, B. L. A. Gricar, M. E. Maan, and T. G. G. Groothuis, “Can male-male competition stabilize speciation? A test in Lake Victoria haplochromine cichlid fish,” Behavioral Ecology and Sociobiology, vol. 59, no. 5, pp. 704–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. M. N. Verzijden, J. Zwinkels, and C. T. Cate, “Cross-fostering does not influence the mate preferences and territorial behaviour of males in Lake Victoria cichlids,” Ethology, vol. 115, no. 1, pp. 39–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. N. Verzijden, R. E. M. Korthof, and C. T. Cate, “Females learn from mothers and males learn from others. The effect of mother and siblings on the development of female mate preferences and male aggression biases in Lake Victoria cichlids, genus Mbipia,” Behavioral Ecology and Sociobiology, vol. 62, no. 8, pp. 1359–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. E. Maan, B. Eshuis, M. P. Haesler, M. V. Schneider, J. J. M. van Alphen, and O. Seehausen, “Color polymorphism and predation in a Lake Victoria cichlid fish,” Copeia, no. 3, pp. 621–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. P. D. Dijkstra, O. Seehausen, and T. G. G. Groothuis, “Intrasexual competition among females and the stabilization of a conspicuous colour polymorphism in a Lake Victoria cichlid fish,” Proceedings of the Royal Society B, vol. 275, no. 1634, pp. 519–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. P. D. Dijkstra, O. Seehausen, M. E. R. Pierotti, and T. G. G. Groothuis, “Male-male competition and speciation: aggression bias towards differently coloured rivals varies between stages of speciation in a Lake Victoria cichlid species complex,” Journal of Evolutionary Biology, vol. 20, no. 2, pp. 496–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. W. J. Korzan and R. D. Fernald, “Territorial male color predicts agonistic behavior of conspecifics in a color polymorphic species,” Behavioral Ecology, vol. 18, no. 2, pp. 318–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. G. W. Barlow and P. Siri, “Consorting among juvenile Midas cichlids (Cichlasoma citrinellum) in relation to own and to parents' color,” Journal of Comparative Psychology, vol. 101, no. 4, pp. 312–316, 1987. View at Google Scholar · View at Scopus
  54. P. D. Dijkstra, O. Seehausen, R. E. Fraterman, and T. G. G. Groothuis, “Learned aggression biases in males of Lake Victoria cichlid fish,” Animal Behaviour, vol. 76, no. 3, pp. 649–655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. P. D. Dijkstra, C. K. Hemelrijk, O. Seehausen, and T. G. G. Groothuis, “Color polymorphism and intrasexual competition in assemblages of cichlid fish,” Behavioral Ecology, vol. 20, no. 1, pp. 138–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. P. D. Dijkstra, J. Lindström, N. B. Metcalfe et al., “Frequency-dependent social dominance in a color polymorphic cichlid fish,” Evolution, vol. 64, no. 10, pp. 2797–2807, 2010. View at Publisher · View at Google Scholar
  57. M. N. Verzijden and C. T. Cate, “Early learning influences species assortative mating preferences in Lake Victoria cichlid fish,” Biology Letters, vol. 3, no. 2, pp. 134–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. J. A. Endler, Natural Selection in the Wild, Princeton University Press, Princeton, NJ, USA, 1986.
  59. B. B. M. Wong and U. Candolin, “How is female mate choice affected by male competition?” Biological Reviews of the Cambridge Philosophical Society, vol. 80, no. 4, pp. 559–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. P. D. Dijkstra, O. Seehausen, and T. G. G. Groothuis, “Direct male-male competition can facilitate invasion of new colour types in Lake Victoria cichlids,” Behavioral Ecology and Sociobiology, vol. 58, no. 2, pp. 136–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. W. J. Rowland, K. J. Bolyard, and A. D. Halpern, “The dual effect of stickleback nuptial coloration on rivals: manipulation of a graded signal using video playback,” Animal Behaviour, vol. 50, no. 1, pp. 267–272, 1995. View at Publisher · View at Google Scholar · View at Scopus
  62. S. R. Pryke and S. Andersson, “Carotenoid-based status signalling in red-shouldered widowbirds (Euplectes axillaris): epaulet size and redness affect captive and territorial competition,” Behavioral Ecology and Sociobiology, vol. 53, no. 6, pp. 393–401, 2003. View at Google Scholar · View at Scopus
  63. R. A. Hill and R. A. Barton, “Red enhances human performance in contests,” Nature, vol. 435, no. 7040, p. 293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. S. R. Pryke and S. C. Griffith, “Red dominates black: agonistic signalling among head morphs in the colour polymorphic Gouldian finch,” Proceedings of the Royal Society B, vol. 273, no. 1589, pp. 949–957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. G. W. Barlow, “Do gold Midas cichlid fish win fights because of their color, or because they lack normal coloration? A logistic solution,” Behavioral Ecology and Sociobiology, vol. 13, no. 3, pp. 197–204, 1983. View at Publisher · View at Google Scholar · View at Scopus
  66. M. R. Evans and K. Norris, “The importance of carotenoids in signaling during aggressive interactions between male firemouth cichlids (Cichlasoma meeki),” Behavioral Ecology, vol. 7, no. 1, pp. 1–6, 1996. View at Google Scholar · View at Scopus
  67. O. Seehausen and J. J. M. van Alphen, “Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria?” Ecology Letters, vol. 2, no. 4, pp. 262–271, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. A. R. Reddon and P. L. Hurd, “Differences in aggressive behavior between convict cichlid color morphs: amelanistic convicts lose even with a size advantage,” Acta Ethologica, vol. 12, no. 1, pp. 49–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. P. D. Dijkstra, S. van Dijk, T. G. G. Groothuis, M. E. R. Pierotti, and O. Seehausen, “Behavioral dominance between female color morphs of a Lake Victoria cichlid fish,” Behavioral Ecology, vol. 20, no. 3, pp. 593–600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Smith, “Sympatric speciation,” American Naturalist, vol. 100, pp. 637–650, 1966. View at Google Scholar
  71. M. Kirkpatrick and V. Ravigné, “Speciation by natural and sexual selection: models and experiments,” American Naturalist, vol. 159, no. 3, pp. S22–S35, 2002. View at Google Scholar · View at Scopus
  72. A. L. Ducrest, L. Keller, and A. Roulin, “Pleiotropy in the melanocortin system, coloration and behavioural syndromes,” Trends in Ecology and Evolution, vol. 23, no. 9, pp. 502–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. W. J. Korzan, R. R. Robison, S. Zhao, and R. D. Fernald, “Color change as a potential behavioral strategy,” Hormones and Behavior, vol. 54, no. 3, pp. 463–470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. O. Seehausen, Y. Terai, I. S. Magalhaes et al., “Speciation through sensory drive in cichlid fish,” Nature, vol. 455, no. 7213, pp. 620–626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. M. E. Maan, O. Seehausen, and J. J. M. van Alphen, “Female mating preferences and male coloration covary with water transparency in a Lake Victoria cichlid fish,” Biological Journal of the Linnean Society, vol. 99, no. 2, pp. 398–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. G. S. van Doorn, P. Edelaar, and F. J. Weissing, “On the origin of species by natural and sexual selection,” Science, vol. 326, no. 5960, pp. 1704–1707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. J. A. Markert and M. E. Arnegard, “Size-dependent use of territorial space by a rock-dwelling cichlid fish,” Oecologia, vol. 154, no. 3, pp. 611–621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. C. H. Martin and M. J. Genner, “A role for male bower size as an intrasexual signal in a Lake Malawi cichlid fish,” Behaviour, vol. 146, no. 7, pp. 963–978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. P. D. Dijkstra, R. Hekman, R. W. Schulz, and T. G. G. Groothuis, “Social stimulation, nuptial colouration, androgens and immunocompetence in a sexual dimorphic cichlid fish,” Behavioral Ecology and Sociobiology, vol. 61, no. 4, pp. 599–609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Folstad and A. J. Karter, “Parasites, bright males, and the immunocompetence handicap,” American Naturalist, vol. 139, no. 3, pp. 603–622, 1992. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Kitano, S. C. Lema, J. A. Luckenbach et al., “Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation,” Current Biology, vol. 20, no. 23, pp. 2124–2130, 2010. View at Publisher · View at Google Scholar