Table of Contents
International Journal of Evolutionary Biology
Volume 2011, Article ID 835946, 11 pages
http://dx.doi.org/10.4061/2011/835946
Research Article

Low Genetic and Morphometric Intraspecific Divergence in Peripheral Copadichromis Populations (Perciformes: Cichlidae) in the Lake Malawi Basin

1Interdisciplinary Research Centre, Katholieke Universiteit Leuven, Campus Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
2KATHO, HIVB, Wilgenstraat 32, 8800 Roeselare, Belgium
3Laboratory of Animal Biodiversity and Systematics, Katholieke Universiteit Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
4Vertebrate Department, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
5Zoology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium

Received 13 November 2010; Accepted 7 March 2011

Academic Editor: Martin J. Genner

Copyright © 2011 Dieter Anseeuw et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Lesica and F. W. Allendorf, “When are peripheral populations valuable for conservation?” Conservation Biology, vol. 9, no. 4, pp. 753–760, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Nei, T. Maruyama, and R. Chakraborty, “The bottleneck effect and genetic variability in populations,” Evolution, vol. 29, no. 1, pp. 1–10, 1975. View at Google Scholar · View at Scopus
  3. E. Mayr, “Change of genetic environment and evolution,” in Evolution as a Process, J. Huxley, A. C. Hardy, and E. B. Ford, Eds., Allen & Unwin, London, UK, 1954. View at Google Scholar
  4. G. García-Ramos and M. Kirkpatrick, “Genetic models of adaptation and gene flow in peripheral populations,” Evolution, vol. 51, no. 1, pp. 21–28, 1997. View at Google Scholar · View at Scopus
  5. W. Salzburger and A. Meyer, “The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics,” Naturwissenschaften, vol. 91, no. 6, pp. 277–290, 2004. View at Google Scholar · View at Scopus
  6. O. Seehausen, “African cichlid fish: a model system in adaptive radiation research,” Proceedings of the Royal Society B, vol. 273, no. 1597, pp. 1987–1998, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. H. Greenwood, “The cichlid fishes of Lake Nabugabo, Uganda. Bulletin of the British Museum (Natural History,” Zoology, vol. 12, pp. 315–357, 1965. View at Google Scholar
  8. M. J. Genner, P. Nichols, G. R. Carvalho et al., “Evolution of a cichlid fish in a Lake Malawi satellite lake,” Proceedings of the Royal Society B, vol. 274, no. 1623, pp. 2249–2257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Tweddle, G. F. Turner, and B. D. Seisay, “Changes in species composition and abundance as a consequence if fishing in Lake Malombe, Malawi,” in The Impact of Species Changes in African Great Lakes, T. J. Pitcher and J. B. Hart, Eds., pp. 413–424, Chapman and Hall, London, UK, 1995. View at Google Scholar
  10. O. L. F. Weyl, “Small-scale fisheries statistics summary,” National Aquatic Resource Management Programme (NARMAP), Short communication, 2001.
  11. O. L. F. Weyl, M. C. Banda, W. Manase, W. Namoto, and L. H. Mwenekibombwe, “Analysis of catch and effort data for the fisheries of Lake Malombe, 1976–1999. Government of Malawi,” Fisheries Bulletin, vol. 45, p. 34, 2001. View at Google Scholar
  12. O. L. F. Weyl, K. R. Mwakiyongo, and D. S. Mandere, “An assessment of the nkacha net fishery of Lake Malombe, Malawi,” African Journal of Aquatic Science, vol. 29, no. 1, pp. 47–55, 2004. View at Google Scholar · View at Scopus
  13. B. C. Emerson, “Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process,” Molecular Ecology, vol. 11, no. 6, pp. 951–966, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Hauser, G. J. Adcock, P. J. Smith, J. H. B. Ramírez, and G. R. Carvalho, “Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus),” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11742–11747, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. W. Birky, T. Maruyama, and P. Fuerst, “An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results,” Genetics, vol. 103, no. 3, pp. 513–527, 1983. View at Google Scholar · View at Scopus
  16. P. Jarne and P. J. L. Lagoda, “Microsatellites, from molecules to populations and back,” Trends in Ecology and Evolution, vol. 11, no. 10, pp. 424–429, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Witte, M. Welten, M. Heemskerk et al., “Major morphological changes in a Lake Victoria cichlid fish within two decades,” Biological Journal of the Linnean Society, vol. 94, no. 1, pp. 41–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kishe-Machumu, F. Witte, and J. H. Wanink, “Dietary shift in benthivorous cichlids after the ecological changes in Lake Victoria,” Animal Biology, vol. 58, no. 4, pp. 401–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. A. Rutjes, M. P. De Zeeuw, G. E. E. J. M. van den Thillart, and F. Witte, “Changes in ventral head width, a discriminating shape factor among African cichlids, can be induced by chronic hypoxia,” Biological Journal of the Linnean Society, vol. 98, no. 3, pp. 608–619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Aljanabi and I. Martinez, “Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques,” Nucleic Acids Research, vol. 25, no. 22, pp. 4692–4693, 1997. View at Google Scholar · View at Scopus
  21. M. J. H. van Oppen, C. Rico, J. C. Deutsch, G. F. Turner, and G. M. Hewitt, “Isolation and characterization of microsatellite loci in the cichlid fish Pseudotropheus zebra,” Molecular Ecology, vol. 6, no. 4, pp. 387–388, 1997. View at Google Scholar · View at Scopus
  22. K. A. Kellogg, J. A. Markert, J. R. Stauffer, and T. D. Kocher, “Microsatellite variation demonstrates multiple paternity in lekking cichlid fishes from Lake Malawi, Africa,” Proceedings of the Royal Society B, vol. 260, no. 1357, pp. 79–84, 1995. View at Google Scholar · View at Scopus
  23. R. Zardoya, D. M. Vollmer, C. Craddock, J. T. Streelman, S. Karl, and A. Meyer, “Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes),” Proceedings of the Royal Society B, vol. 263, no. 1376, pp. 1589–1598, 1996. View at Google Scholar · View at Scopus
  24. A. Meyer, T. D. Kocher, P. Basasibwaki, and A. C. Wilson, “Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences,” Nature, vol. 347, no. 6293, pp. 550–553, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Belkhir, GENETIX, Version 4.05, Laboratoire Genome, Populations, Interactions, CNRS UPR 9060, Montpellier, France, 2000.
  26. M. Raymond and F. Rousset, “GENEPOP version 1.2: populations genetics software for exact tests and ecumenicism,” Journal of Heredity, vol. 86, pp. 248–249, 1995. View at Google Scholar
  27. S. Wright, Evolution and the Genetics of Populations. Vol. 2: The Theory of Gene Frequencies, University of Chicago Press, Chicago, Ill, USA, 1969.
  28. B. S. Weir and C. C. Cockerham, “Estimating F-statistics for the analysis of population structure,” Evolution, vol. 38, no. 6, pp. 1358–1370, 1984. View at Google Scholar · View at Scopus
  29. J. Goudet, “FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3),” 2001, http://www2.unil.ch/popgen/softwares/fstat.htm.
  30. J. M. Cornuet and G. Luikart, “Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data,” Genetics, vol. 144, no. 4, pp. 2001–2014, 1996. View at Google Scholar · View at Scopus
  31. G. Luikart and J. M. Cornuet, “Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data,” Conservation Biology, vol. 12, no. 1, pp. 228–237, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. View at Google Scholar · View at Scopus
  33. J. Rozas, J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas, DnaSP, Version 4.10.8, Universitat de Barcelona, Barcelona, Spain, 2006.
  34. M. Clement, D. Posada, and K. A. Crandall, “TCS: a computer program to estimate gene genealogies,” Molecular Ecology, vol. 9, no. 10, pp. 1657–1659, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Snoeks, The Cichlid Diversity of Lake Malawi/Nyassa/Niassa: Identification, Distribution and Taxonomy, Cichlid Press, Big Bend, Tex, USA, 2004.
  36. F. Bookstein, Morphometric Tools for Landmark Data. Geometry and Biology, Cambridge University Press, Cambridge, UK, 1991.
  37. R Development Core Team, “R: a language and environment for statistical computing. R foundation for statistical computing,” Vienna, Austria, 2010, http://www.r-project.org/.
  38. R. Lande, “Genetic variation and phenotypic evolution during allopatric speciation,” The American Naturalist, vol. 116, pp. 463–479, 1980. View at Google Scholar
  39. T. P. Quinn, S. Hodgson, L. Flynn, R. Hilborn, and D. E. Rogers, “Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations,” Ecological Applications, vol. 17, no. 3, pp. 731–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. D. P. Swain, A. F. Sinclair, and J. Mark Hanson, “Evolutionary response to size-selective mortality in an exploited fish population,” Proceedings of the Royal Society B, vol. 274, no. 1613, pp. 1015–1022, 2007. View at Publisher · View at Google Scholar
  41. J. A. Hutchings and D. J. Fraser, “The nature of fisheries- and farming-induced evolution,” Molecular Ecology, vol. 17, no. 1, pp. 294–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. FAO, “Fisheries Management in the south-east arm of Lake Malawi, the Upper Shire River and Lake Malombe, with particular reference to the fisheries on chambo (Oreochromis spp.),” CIFA Technical Paper 21, FAO, Rome, Italy, 1993. View at Google Scholar
  43. F. W. Allendorf, “Genetic drift and the loss of alleles versus heterozygosity,” Zoological Biology, vol. 5, pp. 181–190, 1986. View at Google Scholar
  44. D. Anseeuw, G. E. Maes, P. Busselen, D. Knapen, J. Snoeks, and E. Verheyen, “Subtle population structure and male-biased dispersal in two Copadichromis species (Teleostei, Cichlidae) from Lake Malawi, East Africa,” Hydrobiologia, vol. 615, no. 1, pp. 69–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Law, “Fishing, selection, and phenotypic evolution,” ICES Journal of Marine Science, vol. 57, no. 3, pp. 659–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. D. N. Reznick and C. K. Ghalambor, “Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata),” Canadian Journal of Fisheries and Aquatic Sciences, vol. 62, no. 4, pp. 791–801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Kuparinen and J. Merilä, “Detecting and managing fisheries-induced evolution,” Trends in Ecology and Evolution, vol. 22, no. 12, pp. 652–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Blay and A. Asabereameyaw, “Assessment of the fishery of a stunted population of the cichlid, Sarotherodon melanotheron (Ruppel), in a closed lagoon in Ghana,” Journal of Applied Ichthyology, vol. 9, pp. 1–11, 1993. View at Google Scholar
  49. F. Witte, K. D. N. Barel, and M. J. P. van Oijen, “Intraspecific variation of haplochromine cichlids from Lake Victoria and its taxonomic implications,” South African Journal of Science, vol. 93, no. 11-12, pp. 585–594, 1997. View at Google Scholar · View at Scopus
  50. J. D. M. Schwartz, M. J. Pallin, R. H. Michener, D. Mbabazi, and L. Kaufman, “Effects of Nile perch, Lates niloticus, on functional and specific fish diversity in Uganda's Lake Kyoga system,” African Journal of Ecology, vol. 44, no. 2, pp. 145–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Endler, Geographic Variation, Speciation and Clines, Princeton University Press, Princeton, NJ, USA, 1977.
  52. K. F. Liem, “Evolutionary strategies and morphological innovations—cichlid pharyngeal jaws,” Systematic Zoology, vol. 189, pp. 93–125, 1973. View at Google Scholar
  53. P. D. Danley and T. D. Kocher, “Speciation in rapidly diverging systems: lessons from Lake Malawi,” Molecular Ecology, vol. 10, no. 5, pp. 1075–1086, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. C. D. Hulsey, “Cichlid genomics and phenotypic diversity in a comparative context,” Integrative and Comparative Biology, vol. 49, no. 6, pp. 618–629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Slatkin, “Gene flow and the geographic structure of natural populations,” Science, vol. 236, no. 4803, pp. 787–792, 1987. View at Google Scholar · View at Scopus
  56. A. P. Hendry and E. B. Taylor, “How much of the variation in adaptive divergence can be explained by gene flow? An evaluation using lake-stream stickleback pairs,” Evolution, vol. 58, no. 10, pp. 2319–2331, 2004. View at Google Scholar · View at Scopus
  57. D. Garant, S. E. Forde, and A. P. Hendry, “The multifarious effects of dispersal and gene flow on contemporary adaptation,” Functional Ecology, vol. 21, no. 3, pp. 434–443, 2007. View at Publisher · View at Google Scholar · View at Scopus