Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 254941, 4 pages
http://dx.doi.org/10.1155/2012/254941
Research Article

Comparative Analyses of Homocitrate Synthase Genes of Ascomycetous Yeasts

Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan

Received 8 December 2011; Accepted 12 January 2012

Academic Editor: Shinji Kondo

Copyright © 2012 Hiromi Nishida. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Xu, B. Andi, J. Qian, A. H. West, and P. F. Cook, “The α-aminoadipate pathway for lysine biosynthesis in fungi,” Cell Biochemistry and Biophysics, vol. 46, no. 1, pp. 43–64, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. H. P. Broquist, “Lysine biosynthesis (yeast),” Methods in Enzymology, vol. 17, no. 2, pp. 112–113, 1971. View at Publisher · View at Google Scholar · View at Scopus
  3. H. J. Vogel, “Distribution of lysine pathways among fungi: evolutionary implications,” American Naturalist, vol. 98, pp. 435–446, 1964. View at Google Scholar
  4. T. M. Zabriskie and M. D. Jackson, “Lysine biosynthesis and metabolism in fungi,” Natural Product Reports, vol. 17, no. 1, pp. 85–97, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Kobashi, M. Nishiyama, and M. Tanokura, “Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus lysine is synthesized via α-aminoadipic acid not via diaminopimelic acid,” Journal of Bacteriology, vol. 181, no. 6, pp. 1713–1718, 1999. View at Google Scholar · View at Scopus
  6. T. Kosuge and T. Hoshino, “Lysine is synthesized through the α-aminoadipate pathway in Thermus thermophilus,” FEMS Microbiology Letters, vol. 169, no. 2, pp. 361–367, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Nishida, M. Nishiyama, N. Kobashi, T. Kosuge, T. Hoshino, and H. Yamane, “A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis,” Genome Research, vol. 9, no. 12, pp. 1175–1183, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Nishida, “Distribution of genes for lysine biosynthesis through the aminoadipate pathway among prokaryotic genomes,” Bioinformatics, vol. 17, no. 2, pp. 189–191, 2001. View at Google Scholar · View at Scopus
  9. I. Iraqui, S. Vissers, M. Cartiaux, and A. Urrestarazu, “Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily,” Molecular and General Genetics, vol. 257, no. 2, pp. 238–248, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at PubMed
  11. H. Quezada, C. Aranda, A. DeLuna et al., “Specialization of the paralogue LYS21 determines lysine biosynthesis under respiratory metabolism in Saccharomyces cerevisiae,” Microbiology, vol. 154, no. 6, pp. 1656–1667, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. E. M. Scott and L. Pillus, “Homocitrate synthase connects amino acid metabolism to chromatin functions through Esa1 and DNA damage,” Genes and Development, vol. 24, no. 17, pp. 1903–1913, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. T. Matsumoto, C.-S. Yun, H. Yoshikawa, and H. Nishida, “Comparative studies of genome-wide maps of nucleosomes between deletion mutants of elp3 and hos2 genes of Saccharomyces cerevisiae,” Plos ONE, vol. 6, no. 1, Article ID e16372, 2011. View at Publisher · View at Google Scholar · View at PubMed
  14. H. Nishida, “Calculation of the ratio of the mononucleosome mapping number to the dinucleosome mapping number for each nucleotide position in the Aspergillus fumigatus genome,” Open Access Bioinformatics, vol. 1, pp. 1–6, 2009. View at Google Scholar
  15. H. Nishida and M. Nishiyama, “What is characteristic of fungal lysine synthesis through the α-aminoadipate pathway?” Journal of Molecular Evolution, vol. 51, no. 3, pp. 299–302, 2000. View at Google Scholar · View at Scopus
  16. M. Kellis, B. W. Birren, and E. S. Lander, “Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae,” Nature, vol. 428, no. 6983, pp. 617–624, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. T. Morris and G. Drouin, “Ectopic gene conversions in the genome of ten hemiasomycete yeast species,” International Journal of Evolutionary Biology, vol. 2011, Article ID 970768, 11 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed
  18. K. H. Wolfe and D. C. Shields, “Molecular evidence for an ancient duplication of the entire yeast genome,” Nature, vol. 387, no. 6634, pp. 708–713, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. A. Hibbs, D. C. Hess, C. L. Myers, C. Huttenhower, K. Li, and O. G. Troyanskaya, “Exploring the functional landscape of gene expression: directed search of large microarray compendia,” Bioinformatics, vol. 23, no. 20, pp. 2692–2699, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. I. Tirosh, N. Sigal, and N. Barkai, “Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences,” Molecular Systems Biology, vol. 6, article 365, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. Tsui, S. Dubuis, M. Gebbia et al., “Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns,” Molecular and Cellular Biology, vol. 31, no. 21, pp. 4348–4355, 2011. View at Publisher · View at Google Scholar · View at PubMed
  22. S. Chen, J. S. Brockenbrough, J. E. Dove, and J. P. Aris, “Homocitrate synthase is located in the nucleus in the yeast Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 272, no. 16, pp. 10839–10846, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Bañuelos, J. Casqueiro, S. Steidl, S. Gutiérrez, A. Brakhage, and J. F. Martín, “Subcellular localization of the homocitrate synthase in Penicillium chrysogenum,” Molecular Genetics and Genomics, vol. 266, no. 5, pp. 711–719, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. W. M. Jaklitsch and C. P. Kubicek, “Homocitrate synthase from Penicillium chrysogenum. Localization, purification of the cytosolic isoenzyme, and sensitivity to lysine,” Biochemical Journal, vol. 269, no. 1, pp. 247–253, 1990. View at Google Scholar · View at Scopus