Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 301894, 9 pages
http://dx.doi.org/10.1155/2012/301894
Review Article

Chromatin Evolution and Molecular Drive in Speciation

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan

Received 14 July 2011; Accepted 5 October 2011

Academic Editor: Chau-Ti Ting

Copyright © 2012 Kyoichi Sawamura. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Dobzhansky, Genetics and the Origin of Species, Columbia University Press, New York, NY, USA, 1937.
  2. H. J. Muller, “Bearing of the Drosophila work on systematics,” in The New Systematics, J. S. Huxley, Ed., pp. 185–268, Claredon Press, Oxford, UK, 1940. View at Google Scholar
  3. E. Mayr, Systematics and the Origin of Species, Columbia University Press, New York, NY, USA, 1942.
  4. P. Michalak, “Epigenetic, transposon and small RNA determinants of hybrid dysfunctions,” Heredity, vol. 102, no. 1, pp. 45–50, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. N. A. Johnson, “Hybrid incompatibility genes: remnants of a genomic battlefield?” Trends in Genetics, vol. 26, no. 7, pp. 317–325, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. C. Presgraves, “The molecular evolutionary basis of species formation,” Nature Reviews Genetics, vol. 11, no. 3, pp. 175–180, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. R. McDermott and M. A. F. Noor, “The role of meiotic drive in hybrid male sterility,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1544, pp. 1265–1272, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. D. Meiklejohn and Y. Tao, “Genetic conflict and sex chromosome evolution,” Trends in Ecology and Evolution, vol. 25, no. 4, pp. 215–223, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. P. Nosil and D. Schluter, “The genes underlying the process of speciation,” Trends in Ecology and Evolution, vol. 26, no. 4, pp. 160–167, 2011. View at Google Scholar
  10. G. Dover, “Molecular drive: a cohesive mode of species evolution,” Nature, vol. 299, no. 5879, pp. 111–117, 1982. View at Publisher · View at Google Scholar · View at Scopus
  11. W. R. Engels and C. R. Preston, “Hybrid dysgenesis in Drosophila melanogaster: the biology of female and male sterility,” Genetics, vol. 92, no. 1, pp. 161–174, 1979. View at Google Scholar · View at Scopus
  12. W. F. Doolittle and C. Sapienza, “Selfish genes, the phenotype paradigm and genome evolution,” Nature, vol. 284, no. 5757, pp. 601–603, 1980. View at Google Scholar · View at Scopus
  13. M. G. Kidwell, “Intraspecific hybrid sterility,” in The Genetics and Biology of Drosophila, M. Ashburner, H. L. Carson, and J. N. Thompson Jr., Eds., vol. 3c, pp. 125–154, Academic Press, London, UK, 1983. View at Google Scholar
  14. M. R. Rose and W. F. Doolittle, “Molecular biological mechanisms of speciation,” Science, vol. 220, no. 4593, pp. 157–162, 1983. View at Google Scholar · View at Scopus
  15. J. A. Coyne, “Mutation rates in hybrids between sibling species of Drosophila,” Heredity, vol. 63, p. 2, 1989. View at Google Scholar · View at Scopus
  16. J. Hey, “Speciation via hybrid dysgenesis: negative evidence from the Drosophila affinis subgroup,” Genetica, vol. 78, no. 2, pp. 97–103, 1989. View at Publisher · View at Google Scholar · View at Scopus
  17. R. J. Waugh O'Neill, M. J. O'Neill, and J. A. Marshall Graves, “Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid,” Nature, vol. 393, no. 6680, pp. 68–72, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Labrador, M. Farré, F. Utzet, and A. Fontdevila, “Interspecific hybridization increases transposition rates of Osvaldo,” Molecular Biology and Evolution, vol. 16, no. 7, pp. 931–937, 1999. View at Google Scholar · View at Scopus
  19. J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates, Sunderland, Mass, USA, 2004.
  20. A. H. Sturtevant, “Genetic studies on Drosophila simulans. I. Introduction. Hybrids with Drosophila melanogaster,” Genetics, vol. 5, no. 5, pp. 488–500, 1920. View at Google Scholar
  21. T. K. Watanabe, “A gene that rescues the lethal hybrids between Drosophila melanogaster and D. simulans,” Japanese Journal of Genetics, vol. 54, no. 5, pp. 325–331, 1979. View at Google Scholar · View at Scopus
  22. D. A. Barbash, J. Roote, and M. Ashburner, “The Drosophila melanogaster Hybrid male rescue gene causes inviability in male and female species hybrids,” Genetics, vol. 154, no. 4, pp. 1747–1771, 2000. View at Google Scholar · View at Scopus
  23. N. J. Brideau, H. A. Flores, J. Wang, S. Maheshwari, X. Wang, and D. A. Barbash, “Two Dobzhansky-Muller Genes interact to cause hybrid lethality in Drosophila,” Science, vol. 314, no. 5803, pp. 1292–1295, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. R. Prigent, H. Matsubayashi, and M. T. Yamamoto, “Transgenic Drosophila simulans strains prove the identity of the speciation gene Lethal hybrid rescue,” Genes and Genetic Systems, vol. 84, no. 5, pp. 353–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Greil, E. De Wit, H. J. Bussemaker, and B. Van Steensel, “HP1 controls genomic targeting of four novel heterochromatin proteins in Drosophila,” EMBO Journal, vol. 26, no. 3, pp. 741–751, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. P. Hutter and M. Ashburner, “Genetic rescue of inviable hybrids between Drosophila melanogaster and its sibling species,” Nature, vol. 327, no. 6120, pp. 331–333, 1987. View at Google Scholar · View at Scopus
  27. D. A. Barbash and M. Ashburner, “A novel system of fertility rescue in Drosophila hybrids reveals a link between hybrid lethality and female sterility,” Genetics, vol. 163, no. 1, pp. 217–226, 2003. View at Google Scholar · View at Scopus
  28. D. A. Barbash, D. F. Siino, A. M. Tarone, and J. Roote, “A rapidly evolving MYB-related protein causes species isolation in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5302–5307, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. L. Giot, J. S. Bader, C. Brouwer et al., “A Protein interaction map of Drosophila melanogaster,” Science, vol. 302, no. 5651, pp. 1727–1736, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. B. Van Steensel, U. Braunschweig, G. J. Filion, M. Chen, J. G. Van Bemmel, and T. Ideker, “Bayesian network analysis of targeting interactions in chromatin,” Genome Research, vol. 20, no. 2, pp. 190–200, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. N. J. Brideau and D. A. Barbash, “Functional conservation of the Drosophila hybrid incompatibility gene Lhr,” BMC Evolutionary Biology, vol. 11, no. 1, article 57, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. M. Nei, Molecular Evolutionary Genetics, Columbia University Press, New York, NY, USA, 1987.
  33. J. H. McDonald and M. Kreitman, “Adaptive protein evolution at the Adh locus in Drosophila,” Nature, vol. 351, no. 6328, pp. 652–654, 1991. View at Google Scholar · View at Scopus
  34. D. A. Barbash, P. Awadalla, and A. M. Tarone, “Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus,” PLoS Biology, vol. 2, no. 6, Article ID e142, 2004. View at Publisher · View at Google Scholar · View at PubMed
  35. G. J. Filion, J. G. van Bemmel, U. Braunschweig et al., “Systematic protein location mapping reveals five principal chromatin types in Drosophila cells,” Cell, vol. 143, no. 2, pp. 212–224, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. E. Hadorn, “Zur autonomie und phasenspezifität der latalität von bastarden zwischen Drosophila melanogaster und Drosophila simulans,” Revue Suisse de Zoologie, vol. 68, no. 2, pp. 197–207, 1961. View at Google Scholar
  37. K. Sawamura, M. T. Yamamoto, and T. K. Watanabe, “Hybrid lethal systems in the Drosophila melanogaster species complex. II. The Zygotic hybrid rescue (Zhr) gene of D. melanogaster,” Genetics, vol. 133, no. 2, pp. 307–313, 1993. View at Google Scholar · View at Scopus
  38. K. Sawamura and M. T. Yamamoto, “Cytogenetical localization of Zygotic hybrid rescue (Zhr), a Drosophila melanogaster gene that rescues interspecific hybrids from embryonic lethality,” Molecular and General Genetics, vol. 239, no. 3, pp. 441–449, 1993. View at Google Scholar · View at Scopus
  39. K. Sawamura, A. Fujita, R. Yokoyama et al., “Molecular and genetic dissection of a reproductive isolation gene, zygotic hybrid rescue, of Drosophila melanogaster,” Japanese Journal of Genetics, vol. 70, no. 2, pp. 223–232, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Sawamura and M. T. Yamamoto, “Characterization of a reproductive isolation gene, zygotic hybrid rescue, of Drosophila melanogaster by using minichromosomes,” Heredity, vol. 79, no. 1, pp. 97–103, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. P. M. Ferree and D. A. Barbash, “Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila,” PLoS Biology, vol. 7, no. 10, Article ID e1000234, 2009. View at Publisher · View at Google Scholar · View at PubMed
  42. K. Sawamura, C. I. Wu, and T. L. Karr, “Early development and lethality in D. simulans/D. melanogaster hybrids,” in Proceedings of the Annual Drosophila Research Conference, vol. 38, p. 175, 1997.
  43. M. Carlson and D. Brutlag, “Cloning and characterization of a complex satellite DNA from Drosophila melanogaster,” Cell, vol. 11, no. 2, pp. 371–381, 1977. View at Google Scholar · View at Scopus
  44. T. Hsieh and D. Brutlag, “Sequence and sequence variation within the 1.688 g/cm3 satellite DNA of Drosophila melanogaster,” Journal of Molecular Biology, vol. 135, no. 2, pp. 465–481, 1979. View at Google Scholar · View at Scopus
  45. D. L. Brutlag, “Molecular arrangement and evolution of heterochromatic DNA,” Annual Review of Genetics, vol. 14, pp. 121–144, 1980. View at Google Scholar · View at Scopus
  46. A. J. Hilliker and R. Appels, “Pleiotropic effects associated with the deletion of heterochromatin surrounding rDNA on the X chromosome of Drosophila,” Chromosoma, vol. 86, no. 4, pp. 469–490, 1982. View at Google Scholar · View at Scopus
  47. A. R. Lohe, A. J. Hilliker, and P. A. Roberts, “Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster,” Genetics, vol. 134, no. 4, pp. 1149–1174, 1993. View at Google Scholar · View at Scopus
  48. S. R. Barnes, D. A. Webb, and G. Dover, “The distribution of satellite and main-band DNA components in the melanogaster species subgroup of Drosophila. I. Fractionation of DNA in actinomycin D and distamycin A density gradients,” Chromosoma, vol. 67, no. 4, pp. 341–363, 1978. View at Google Scholar · View at Scopus
  49. T. Strachan, E. Coen, D. Webb, and G. Dover, “Modes and rates of change of complex DNA families of Drosophila,” Journal of Molecular Biology, vol. 158, no. 1, pp. 37–54, 1982. View at Google Scholar · View at Scopus
  50. T. Strachan, D. Webb, and G. A. Dover, “Transition stages of molecular drive in multiple-copy DNA families in Drosophila,” EMBO Journal, vol. 4, no. 7, pp. 1701–1708, 1985. View at Google Scholar
  51. A. R. Lohe and D. L. Brutlag, “Identical satellite DNA sequences in sibling species of Drosophila,” Journal of Molecular Biology, vol. 194, no. 2, pp. 161–170, 1987. View at Google Scholar · View at Scopus
  52. K. Sawamura, T. Taira, and T. K. Watanabe, “Hybrid lethal systems in the Drosophila melanogaster species complex. I. The maternal hybrid rescue (mhr) gene of Drosophila simulans,” Genetics, vol. 133, no. 2, pp. 299–305, 1993. View at Google Scholar · View at Scopus
  53. P. Hutter, J. Roote, and M. Ashburner, “A genetic basis for the inviability of hybrids between sibling species of Drosophila,” Genetics, vol. 124, no. 4, pp. 909–920, 1990. View at Google Scholar · View at Scopus
  54. P. M. Ferree and D. A. Barbash, “Distorted sex ratios: a window into RNAi-mediated silencing,” PLoS Biology, vol. 5, no. 11, Article ID e303, pp. 2453–2457, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. T. S. Hsieh and D. L. Brutlag, “A protein that preferentially binds Drosophila satellite DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 2, pp. 726–730, 1979. View at Google Scholar · View at Scopus
  56. E. Käs and U. K. Laemmli, “In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics,” EMBO Journal, vol. 11, no. 2, pp. 705–716, 1992. View at Google Scholar · View at Scopus
  57. W. F. Marshall, A. Straight, J. F. Marko et al., “Interphase chromosomes undergo constrained diffusional motion in living cells,” Current Biology, vol. 7, no. 12, pp. 930–939, 1997. View at Google Scholar · View at Scopus
  58. R. Blattes, C. Monod, G. Susbielle et al., “Displacement of D1, HP1 and topoisomerase II from satellite heterochromatin by a specific polyamide,” EMBO Journal, vol. 25, no. 11, pp. 2397–2408, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. M. C. Carracedo, A. Asenjo, and P. Casares, “Location of Shfr a new gene that rescues hybrid female viability in crosses between Drosophila simulans females and D. melanogaster males,” Heredity, vol. 84, no. 6, pp. 630–638, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Usakin, J. Abad, V. V. Vagin, B. De Pablos, A. Villasante, and V. A. Gvozdev, “Transcription of the 1.688 satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries,” Genetics, vol. 176, no. 2, pp. 1343–1349, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. V. Cattani and D. C. Presgraves, “Genetics and lineage-specific evolution of a lethal hybrid incompatibility between Drosophila mauritiana and its sibling species,” Genetics, vol. 181, no. 4, pp. 1545–1555, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. J. David, F. Lemeunier, L. Tsacas, and C. Bocquet, “Hybridization of a new species, Drosophila mauritiana with D. Melanogaster and D. simulans,” Annales de Genetique, vol. 17, no. 4, pp. 235–241, 1974. View at Google Scholar · View at Scopus
  63. C. I. Wu and M. F. Palopoli, “Genetics of postmating reproductive isolation in animals,” Annual Review of Genetics, vol. 28, pp. 283–308, 1994. View at Google Scholar · View at Scopus
  64. D. E. Perez, C. I. Wu, N. A. Johnson, and M. L. Wu, “Genetics of reproductive isolation in the Drosophila simulans clade: DNA marker-assisted mapping and characterization of a hybrid-male sterility gene, Odysseus (Ods),” Genetics, vol. 134, no. 1, pp. 261–275, 1993. View at Google Scholar · View at Scopus
  65. D. E. Perez and C. I. Wu, “Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough,” Genetics, vol. 140, no. 1, pp. 201–206, 1995. View at Google Scholar · View at Scopus
  66. C. T. Ting, S. C. Tsaur, M. L. Wu, and C. I. Wu, “A rapidly evolving homeobox at the site of a hybrid sterility gene,” Science, vol. 282, no. 5393, pp. 1501–1504, 1998. View at Google Scholar · View at Scopus
  67. K. Tabuchi, S. Yoshikawa, Y. Yuasa, K. Sawamoto, and H. Okano, “A novel Drosophila paired-like homeobox gene related to Caenorhabditis elegans unc-4 is expressed in subsets of postmitotic neurons and epidermal cells,” Neuroscience Letters, vol. 257, no. 1, pp. 49–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. C. T. Ting, S. C. Tsaur, S. Sun, W. E. Browne, N. H. Patel, and C. I. Wu, “Gene duplication and speciation in Drosophila: evidence from the Odysseus locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 33, pp. 12232–12235, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. S. Sun, C. T. Ting, and C. I. Wu, “The normal function of a speciation gene, Odysseus, and its hybrid sterility effect,” Science, vol. 305, no. 5680, pp. 81–83, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. P. Michalak and M. A. F. Noor, “Association of misexpression with sterility in hybrids of Drosophila simulans and D. mauritiana,” Journal of Molecular Evolution, vol. 59, no. 2, pp. 277–282, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. X. Lu, J. A. Shapiro, C. T. Ting et al., “Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility,” Genome Research, vol. 20, no. 8, pp. 1097–1102, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. J. J. Bayes and H. S. Malik, “Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species,” Science, vol. 326, no. 5959, pp. 1538–1541, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. A. W. Davis, J. Roote, T. Morley, K. Sawamura, S. Herrmann, and M. Ashburner, “Rescue of hybrid sterility in crosses between D. melanogaster and D. simulans,” Nature, vol. 380, no. 6570, pp. 157–159, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. K. Sawamura, A. W. Davis, and C. I. Wu, “Genetic analysis of speciation by means of introgression into Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2652–2655, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. K. Sawamura and M. T. Yamamoto, “The minimal interspecific introgression resulting in male sterility in Drosophila,” Genetical Research, vol. 84, no. 2, pp. 81–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Sawamura, T. L. Karr, and M. T. Yamamoto, “Genetics of hybrid inviability and sterility in Drosophila: dissection of introgression of D. simulans genes in D. melanogaster genome,” Genetica, vol. 120, no. 1–3, pp. 253–260, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Sawamura, J. Roote, C. I. Wu, and M. T. Yamamoto, “Genetic complexity underlying hybrid male sterility in Drosophila,” Genetics, vol. 166, no. 2, pp. 789–796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Sawamura, K. Maehara, S. Mashino et al., “Introgression of Drosophila simulans nuclear pore protein 160 in Drosophila melanogaster alone does not cause inviability but does cause female sterility,” Genetics, vol. 186, no. 2, pp. 669–676, 2010. View at Publisher · View at Google Scholar · View at PubMed
  79. D. C. Presgraves, L. Balagopalan, S. M. Abmayr, and H. A. Orr, “Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila,” Nature, vol. 423, no. 6941, pp. 715–719, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. S. Tang and D. C. Presgraves, “Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities,” Science, vol. 323, no. 5915, pp. 779–782, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. K. Sawamura, “Genetics of hybrid inviability and sterility in Drosophila: the Drosophila melanogaster-Drosophila simulans case,” Plant Species Biology, vol. 15, no. 3, pp. 237–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. D. C. Presgraves, “A fine-scale genetic analysis of hybrid incompatibilities in Drosophila,” Genetics, vol. 163, no. 3, pp. 955–972, 2003. View at Google Scholar · View at Scopus
  83. D. C. Presgraves and W. Stephan, “Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96,” Molecular Biology and Evolution, vol. 24, no. 1, pp. 306–314, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. N. L. Clark and C. F. Aquadro, “A novel method to detect proteins evolving at correlated rates: identifying new functional relationships between coevolving proteins,” Molecular Biology and Evolution, vol. 27, no. 5, pp. 1152–1161, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. A. Köhler and E. Hurt, “Gene regulation by nucleoporins and links to cancer,” Molecular Cell, vol. 38, no. 1, pp. 6–15, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. S. Mendjan, M. Taipale, J. Kind et al., “Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila,” Molecular Cell, vol. 21, no. 6, pp. 811–823, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. A. V. Orjalo, A. Arnaoutov, Z. Shen et al., “The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly,” Molecular Biology of the Cell, vol. 17, no. 9, pp. 3806–3818, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. M. Zuccolo, A. Alves, V. Galy et al., “The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions,” EMBO Journal, vol. 26, no. 7, pp. 1853–1864, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. M. Capelson, Y. Liang, R. Schulte, W. Mair, U. Wagner, and M. W. Hetzer, “Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes,” Cell, vol. 140, no. 3, pp. 372–383, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. R. K. Mishra, P. Chakraborty, A. Arnaoutov, B. M. A. Fontoura, and M. Dasso, “The Nup107-160 complex and γ-TuRC regulate microtubule polymerization at kinetochores,” Nature Cell Biology, vol. 12, no. 2, pp. 164–169, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. J. M. Vaquerizas, R. Suyama, J. Kind, K. Miura, N. M. Luscombe, and A. Akhtar, “Nuclear pore proteins Nup153 and megator define transcriptionally active regions in the Drosophila genome,” PLoS Genetics, vol. 6, no. 2, Article ID e1000846, 2010. View at Publisher · View at Google Scholar · View at PubMed
  92. C. Merrill, L. Bayraktaroglu, A. Kusano, and B. Ganetzky, “Truncated RanGAP encoded by the Segregation Distorter Locus of Drosophila,” Science, vol. 283, no. 5408, pp. 1742–1745, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Tao, J. P. Masly, L. Araripe, Y. Ke, and D. L. Hartl, “A sex-ratio meiotic drive system in Drosophila simulans. I: an autosomal suppressor,” PLoS Biology, vol. 5, no. 11, Article ID e292, pp. 2560–2575, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. J. Forejt, “Hybrid sterility in the mouse,” Trends in Genetics, vol. 12, no. 10, pp. 412–417, 1996. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Oka, A. Mita, N. Sakurai-Yamatani et al., “Hybrid breakdown caused by substitution of the X chromosome between two mouse subspecies,” Genetics, vol. 166, no. 2, pp. 913–924, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Oka, T. Aoto, Y. Totsuka et al., “Disruption of genetic interaction between two autosomal regions and the X chromosome causes reproductive isolation between mouse strains derived from different subspecies,” Genetics, vol. 175, no. 1, pp. 185–197, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. J. Forejt and P. Ivanyi, “Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L.),” Genetical Research, vol. 24, no. 2, pp. 189–206, 1974. View at Google Scholar · View at Scopus
  98. O. Mihola, Z. Trachtulec, C. Vlcek, J. C. Schimenti, and J. Forejt, “A mouse speciation gene encodes a meiotic histone H3 methyltransferase,” Science, vol. 323, no. 5912, pp. 373–375, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. K. Hayashi, K. Yoshida, and Y. Matsui, “A histone H3 methyltransferase controls epigenetic events required for meiotic prophase,” Nature, vol. 438, no. 7066, pp. 374–378, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. Y. Matsuda, T. Hirobe, and V. M. Chapman, “Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 11, pp. 4850–4854, 1991. View at Google Scholar · View at Scopus
  101. Y. Matsuda, P. B. Moens, and V. M. Chapman, “Deficiency of X and Y chromosomal pairing at meiotic prophase in spermatocytes of sterile interspecific hybrids between laboratory mice (Mus domesticus) and Mus spretus,” Chromosoma, vol. 101, no. 8, pp. 483–492, 1992. View at Publisher · View at Google Scholar · View at Scopus
  102. D. W. Hale, L. L. Washburn, and E. M. Eicher, “Meiotic abnormalities in hybrid mice of the C57BL/6J x Mus spretus cross suggest a cytogenetic basis for Haldane's rule of hybrid sterility,” Cytogenetics and Cell Genetics, vol. 63, no. 4, pp. 221–234, 1993. View at Google Scholar · View at Scopus
  103. J. L. Guenet, C. Nagamine, D. Simon-Chazottes, X. Montagutelli, and F. Bonhomme, “Hst-3: an X-linked hybrid sterility gene,” Genetical Research, vol. 56, no. 2-3, pp. 163–165, 1990. View at Google Scholar · View at Scopus
  104. H. T. Imai, M. Y. Wada, and K. Moriwaki, “The sex chromosome association (Sxa) gene is located on the X-chromosome in mice,” Japanese Journal of Genetics, vol. 65, no. 2, pp. 65–69, 1990. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Winking, K. Nielsen, and A. Gropp, “Variable positions of NORs in Mus musculus,” Cytogenetics and Cell Genetics, vol. 26, no. 2–4, pp. 158–164, 1980. View at Google Scholar · View at Scopus
  106. Y. Matsuda and V. M. Chapman, “In situ analysis of centromeric satellite DNA segregating in Mus species crosses,” Mammalian Genome, vol. 1, no. 2, pp. 71–77, 1990. View at Publisher · View at Google Scholar · View at Scopus
  107. P. L. Oliver, L. Goodstadt, J. J. Bayes et al., “Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa,” PLoS Genetics, vol. 5, no. 12, Article ID e1000753, 2009. View at Publisher · View at Google Scholar · View at PubMed
  108. J. H. Thomas, R. O. Emerson, and J. Shendure, “Extraordinary molecular evolution in the PRDM9 fertility gene,” PloS One, vol. 4, no. 12, article e8505, 2009. View at Google Scholar
  109. C. P. Ponting, “What are the genomic drivers of the rapid evolution of PRDM9?” Trends in Genetics, vol. 27, no. 5, pp. 165–171, 2011. View at Publisher · View at Google Scholar · View at PubMed
  110. F. Baudat, J. Buard, C. Grey et al., “PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice,” Science, vol. 327, no. 5967, pp. 836–840, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. S. Myers, R. Bowden, A. Tumian et al., “Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination,” Science, vol. 327, no. 5967, pp. 876–879, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. E. D. Parvanov, P. M. Petkov, and K. Paigen, “Prdm9 controls activation of mammalian recombination hotspots,” Science, vol. 327, no. 5967, p. 835, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. T. Jenuwein and C. D. Allis, “Translating the histone code,” Science, vol. 293, no. 5532, pp. 1074–1080, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. J. C. Peng and G. H. Karpen, “Epigenetic regulation of heterochromatic DNA stability,” Current Opinion in Genetics and Development, vol. 18, no. 2, pp. 204–211, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. J. C. Peng and G. H. Karpen, “H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability,” Nature Cell Biology, vol. 9, no. 1, pp. 25–35, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. S. H. Frank, “Divergence of meiotic drive-suppressors as an explanation for sex-biased hybrid sterility and inviability,” Evolution, vol. 45, no. 2, pp. 262–267, 1991. View at Google Scholar
  117. L. D. Hurst and A. Pomiankowski, “Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane's rule and related phenomena,” Genetics, vol. 128, no. 4, pp. 841–858, 1991. View at Google Scholar · View at Scopus
  118. N. A. Johnson and C. I. Wu, “An empirical test of the meiotic drive models of hybrid sterility: sex- ratio data from hybrids between Drosophila simulans and Drosophila sechellia,” Genetics, vol. 130, no. 3, pp. 507–511, 1992. View at Google Scholar · View at Scopus
  119. J. A. Coyne and H. A. Orr, “Further evidence against the involvement of meiotic drive in hybrid sterility,” Evolution, vol. 47, no. 2, pp. 685–687, 1993. View at Google Scholar
  120. Y. Tao, D. L. Hartl, and C. C. Laurie, “Sex-ratio segregation distortion associated with reproductive isolation in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 23, pp. 13183–13188, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. H. A. Orr and S. Irving, “Segregation distortion in hybrids between the Bogota and USA subspecies of Drosophila pseudoobscura,” Genetics, vol. 169, no. 2, pp. 671–682, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. N. Phadnis and H. A. Orr, “A single gene causes both male sterility and segregation distortion in Drosophila hybrids,” Science, vol. 323, no. 5912, pp. 376–379, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. S. Henikoff, K. Ahmad, and H. S. Malik, “The centromere paradox: stable inheritance with rapidly evolving DNA,” Science, vol. 293, no. 5532, pp. 1098–1102, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. G. P. Smith, “Evolution of repeated DNA sequences by unequal crossover,” Science, vol. 191, no. 4227, pp. 528–535, 1976. View at Google Scholar · View at Scopus
  125. B. Charlesworth, P. Sniegowski, and W. Stephan, “The evolutionary dynamics of repetitive DNA in eukaryotes,” Nature, vol. 371, no. 6494, pp. 215–220, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. A. K. Csink and S. Henikoff, “Something from nothing: the evolution and utility of satellite repeats,” Trends in Genetics, vol. 14, no. 5, pp. 200–204, 1998. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Henikoff, K. Ahmad, J. S. Platero, and B. Van Steensel, “Heterochromatic deposition of centromeric histone H3-like proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 2, pp. 716–721, 2000. View at Publisher · View at Google Scholar · View at Scopus
  128. H. S. Malik and S. Henikoff, “Adaptive evolution of Cid, a centromere-specific histone in Drosophila,” Genetics, vol. 157, no. 3, pp. 1293–1298, 2001. View at Google Scholar · View at Scopus
  129. C. I. Wu, T. W. Lyttle, M. L. Wu, and G. F. Lin, “Association between a satellite DNA sequence and the responder of segregation distorter in D. melanogaster,” Cell, vol. 54, no. 2, pp. 179–189, 1988. View at Google Scholar · View at Scopus
  130. L. Fishman and A. Saunders, “Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers,” Science, vol. 322, no. 5907, pp. 1559–1562, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. H. J. Muller and G. Pontecorvo, “Recombinants between Drosophila species the F1 hybrids of which are sterile,” Nature, vol. 146, no. 3693, pp. 199–200, 1940. View at Google Scholar · View at Scopus
  132. H. A. Orr, “Mapping and characterization of a “speciation gene” in Drosophila,” Genetical Research, vol. 59, no. 2, pp. 73–80, 1992. View at Google Scholar · View at Scopus
  133. J. P. Masly, C. D. Jones, M. A. F. Noor, J. Locke, and H. A. Orr, “Gene transposition as a cause of hybrid sterility in Drosophila,” Science, vol. 313, no. 5792, pp. 1448–1450, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. M. Lynch and A. G. Force, “The origin of interspecific genomic incompatibility via gene duplication,” American Naturalist, vol. 156, no. 6, pp. 590–605, 2000. View at Publisher · View at Google Scholar · View at Scopus
  135. J. B. S. Haldane, “Sex ratio and unisexual sterility in hybrid animals,” Journal of Genetics, vol. 12, no. 2, pp. 101–109, 1922. View at Publisher · View at Google Scholar · View at Scopus
  136. C. I. Wu, N. A. Johnson, and M. F. Palopoli, “Haldane's rule and its legacy: why are there so many sterile males?” Trends in Ecology and Evolution, vol. 11, no. 7, pp. 281–284, 1996. View at Publisher · View at Google Scholar · View at Scopus
  137. C. C. Laurie, “The weaker sex is heterogametic: 75 years of Haldane's rule,” Genetics, vol. 147, no. 3, pp. 937–951, 1997. View at Google Scholar · View at Scopus
  138. R. J. Kulathinal and R. S. Singh, “The molecular basis of speciation: from patterns to processes, rules to mechanisms,” Journal of Genetics, vol. 87, no. 4, pp. 327–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Turelli and H. A. Orr, “The dominance theory of Haldane’s rule,” Genetics, vol. 140, no. 1, pp. 389–402, 1995. View at Google Scholar · View at Scopus
  140. E. Lifschytz and D. L. Lindsley, “The role of X-chromosome inactivation during spermatogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 1, pp. 182–186, 1972. View at Google Scholar · View at Scopus
  141. X. Lu and C.-I. Wu, “Sex, sex chromosomes and gene expression,” BMC Biology, vol. 9, article 30, 2011. View at Publisher · View at Google Scholar · View at PubMed
  142. L. M. Mikhaylova and D. I. Nurminsky, “Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome,” BMC Biology, vol. 9, article 29, 2011. View at Publisher · View at Google Scholar · View at PubMed
  143. D. Haig and C. Graham, “Genomic imprinting and the strange case of the insulin-like growth factor II receptor,” Cell, vol. 64, no. 6, pp. 1045–1046, 1991. View at Google Scholar · View at Scopus
  144. T. Moore and D. Haig, “Genomic imprinting in mammalian development: a parental tug-of-war,” Trends in Genetics, vol. 7, no. 2, pp. 45–49, 1991. View at Google Scholar · View at Scopus
  145. R. J. Scott and M. Spielman, “Deeper into the maize: new insights into genomic imprinting in plants,” BioEssays, vol. 28, no. 12, pp. 1167–1171, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. T. Kinoshita, Y. Ikeda, and R. Ishikawa, “Genomic imprinting: a balance between antagonistic roles of parental chromosomes,” Seminars in Cell and Developmental Biology, vol. 19, no. 6, pp. 574–579, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. U. Zechner, W. Shi, M. Hemberger et al., “Divergent genetic and epigenetic post-zygotic isolation mechanisms in Mus and Peromyscus,” Journal of Evolutionary Biology, vol. 17, no. 2, pp. 453–460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  148. C. Josefsson, B. Dilkes, and L. Comai, “Parent-dependent loss of gene silencing during interspecies hybridization,” Current Biology, vol. 16, no. 13, pp. 1322–1328, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. T. Kinoshita, “Reproductive barrier and genomic imprinting in the endosperm of flowering plants,” Genes and Genetic Systems, vol. 82, no. 3, pp. 177–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. C. D. Wiley, H. H. Matundan, A. R. Duselis, A. T. Isaacs, and P. B. Vrana, “Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation,” PLoS One, vol. 3, no. 10, Article ID e3572, 2008. View at Publisher · View at Google Scholar · View at PubMed