Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 698198, 12 pages
http://dx.doi.org/10.1155/2012/698198
Review Article

Evolutionary Implications of Mechanistic Models of TE-Mediated Hybrid Incompatibility

Department of Biology, Indiana University, 1003 Third Street, Bloomington, IN 47405, USA

Received 16 July 2011; Accepted 16 November 2011

Academic Editor: Chau-Ti Ting

Copyright © 2012 Dean M. Castillo and Leonie C. Moyle. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates, Sunderland, Mass, USA, 2004.
  2. T. Dobzhansky, Genetics and the Origin of Species, Columbia University Press, West Sussex, UK, 1937.
  3. H. J. Muller, “Isolationg mechanisms, evolution and temperature,” Biological Symposia, vol. 6, pp. 71–125, 1942. View at Google Scholar
  4. N. A. Johnson, “Hybrid incompatibility genes: remnants of a genomic battlefield?” Trends in Genetics, vol. 26, no. 7, pp. 317–325, 2010. View at Publisher · View at Google Scholar · View at PubMed
  5. D. C. Presgraves, “The molecular evolutionary basis of species formation,” Nature Reviews Genetics, vol. 11, no. 3, pp. 175–180, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. M. G. Kidwell, “Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation,” Genetics, vol. 111, no. 2, pp. 337–350, 1985. View at Google Scholar
  7. G. Yannopoulos, N. Stamatis, M. Monastirioti, P. Hatzopoulos, and C. Louis, “hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF,” Cell, vol. 49, no. 4, pp. 487–495, 1987. View at Google Scholar
  8. J. P. Blumenstiel and D. L. Hartl, “Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 15965–15970, 2005. View at Publisher · View at Google Scholar · View at PubMed
  9. J. A. Coyne, “Meiotic segregation and male recombination in interspecific hybrids of Drosophila,” Genetics, vol. 114, no. 2, pp. 485–494, 1986. View at Google Scholar
  10. J. Hey, “Speciation via hybrid dysgenesis: negative evidence from the Drosophila affinis subgroup,” Genetica, vol. 78, no. 2, pp. 97–104, 1988. View at Publisher · View at Google Scholar
  11. J. A. Coyne, “Mutation rates in hybrids between sibling species of Drosophila,” Heredity, vol. 63, pp. 155–162, 1989. View at Publisher · View at Google Scholar
  12. P. Michalak, “Epigenetic, transposon and small RNA determinants of hybrid dysfunctions,” Heredity, vol. 102, no. 1, pp. 45–50, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. R. A. Martienssen, “Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis,” New Phytologist, vol. 186, no. 1, pp. 46–53, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. J. P. Calarco and R. A. Martienssen, “Genome reprogramming and small interfering RNA in the Arabidopsis germline,” Current Opinion in Genetics and Development, vol. 21, no. 2, pp. 134–139, 2011. View at Publisher · View at Google Scholar · View at PubMed
  15. A. Girard and G. J. Hannon, “Conserved themes in small-RNA-mediated transposon control,” Trends in Cell Biology, vol. 18, no. 3, pp. 136–148, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. R. K. Slotkin, M. Vaughn, F. Borges et al., “Epigenetic reprogramming and small RNA silencing of transposable elements in pollen,” Cell, vol. 136, no. 3, pp. 461–472, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. S. Chambeyron, A. Popkova, G. Payen-Groschêne et al., “piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 14964–14969, 2008. View at Publisher · View at Google Scholar · View at PubMed
  18. S. McCormick, “Male gametophyte development,” Plant Cell, vol. 5, no. 10, pp. 1265–1275, 1993. View at Publisher · View at Google Scholar · View at PubMed
  19. V. Olmedo-Monfil, N. Durán-Figueroa, M. Arteaga-Vázquez et al., “Control of female gamete formation by a small RNA pathway in Arabidopsis,” Nature, vol. 464, no. 7288, pp. 628–632, 2010. View at Publisher · View at Google Scholar
  20. R. A. Mosher and C. Melnyk, “siRNAs and DNA methylation: seedy epigenetics,” Trends in Plant Science, vol. 15, no. 4, pp. 204–210, 2010. View at Publisher · View at Google Scholar · View at PubMed
  21. C. Josefsson, B. Dilkes, and L. Comai, “Parent-dependent loss of gene silencing during interspecies hybridization,” Current Biology, vol. 16, no. 13, pp. 1322–1328, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. S. Adams, R. Vinkenoog, M. Spielman, H. G. Dickinson, and R. J. Scott, “Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation,” Development, vol. 127, no. 11, pp. 2493–2502, 2000. View at Google Scholar
  23. L. Comai, A. P. Tyagi, K. Winter et al., “Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids,” Plant Cell, vol. 12, no. 9, pp. 1551–1568, 2000. View at Publisher · View at Google Scholar
  24. C. Bushell, M. Spielman, and R. J. Scott, “The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species,” Plant Cell, vol. 15, no. 6, pp. 1430–1442, 2003. View at Google Scholar
  25. W. D. Dawson, “Fertility and size inheritance in a Peromyscus species cross,” Evolution, vol. 19, no. 1, pp. 44–55, 1965. View at Google Scholar
  26. P. B. Vrana, J. A. Fossella, P. Matteson, T. del Rio, M. J. O'Neill, and S. M. Tilghman, “Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in peromyscus,” Nature Genetics, vol. 25, no. 1, pp. 120–124, 2000. View at Publisher · View at Google Scholar · View at PubMed
  27. M. Chen, M. Ha, E. Lackey, J. Wang, and Z. J. Chen, “RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids,” Genetics, vol. 178, no. 4, pp. 1845–1858, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. S. A. Johnston, T. P. M. den Nijs, S. J. Peloquin, and R. E. Hanneman, “The significance of genic balance to endosperm development in interspecific crosses,” Theoretical and Applied Genetics, vol. 57, no. 1, pp. 5–9, 1980. View at Publisher · View at Google Scholar
  29. A. Katsiotis, R. E. Hanneman, and R. A. Forsberg, “Endosperm balance number and the polar-nuclei activation hypotheses for endosperm development in interspecific crosses of Solanaceae and Gramineae, respectively,” Theoretical and Applied Genetics, vol. 91, no. 6-7, pp. 848–855, 1995. View at Publisher · View at Google Scholar
  30. G. C. Ingram, “Family life at close quarters: communication and constraint in angiosperm seed development,” Protoplasma, vol. 247, no. 3, pp. 195–214, 2010. View at Publisher · View at Google Scholar · View at PubMed
  31. M. E. Nasrallah, K. Yogeeswaran, S. Snyder, and J. B. Nasrallah, “Arabidopsis species hybrids in the study of species differences and evolution of amphiploidy in plants,” Plant Physiology, vol. 124, no. 4, pp. 1605–1614, 2000. View at Publisher · View at Google Scholar
  32. M. Ron, M. A. Saez, L. E. Williams, J. C. Fletcher, and S. McCormick, “Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis,” Genes and Development, vol. 24, no. 10, pp. 1010–1021, 2010. View at Publisher · View at Google Scholar · View at PubMed
  33. H. A. Orr and M. Turelli, “The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities,” Evolution, vol. 55, no. 6, pp. 1085–1094, 2001. View at Google Scholar
  34. H. A. Orr, “The population genetics of speciation: the evolution of hybrid incompatibilities,” Genetics, vol. 139, no. 4, pp. 1805–1813, 1995. View at Google Scholar
  35. L. C. Moyle and T. Nakazato, “Hybrid incompatibility "snowballs" between Solanum species,” Science, vol. 329, no. 5998, pp. 1521–1523, 2010. View at Publisher · View at Google Scholar · View at PubMed
  36. D. R. Matute, I. A. Butler, D. A. Turissini, and J. A. Coyne, “A test of the snowball theory for the rate of evolution of hybrid incompatibilities,” Science, vol. 329, no. 5998, pp. 1518–1521, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. A. S. Kondrashov, “Accumulation of Dobzhansky-Muller incompatibilities within a spatially structured population,” Evolution, vol. 57, no. 1, pp. 151–153, 2003. View at Google Scholar
  38. R. K. Slotkin and R. Martienssen, “Transposable elements and the epigenetic regulation of the genome,” Nature Reviews Genetics, vol. 8, no. 4, pp. 272–285, 2007. View at Publisher · View at Google Scholar · View at PubMed
  39. M. A. Johnson and J. Bender, “Reprogramming the epigenome during germline and seed development,” Genome Biology, vol. 10, no. 8, p. 232, 2009. View at Google Scholar
  40. H. Okamoto and H. Hirochika, “Silencing of transposable elements in plants,” Trends in Plant Science, vol. 6, no. 11, pp. 527–534, 2001. View at Publisher · View at Google Scholar
  41. J. Brennecke, A. A. Aravin, A. Stark et al., “Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila,” Cell, vol. 128, no. 6, pp. 1089–1103, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. B. Charlesworth, P. Sniegowski, and W. Stephan, “The evolutionary dynamics of repetitive DNA in eukaryotes,” Nature, vol. 371, no. 6494, pp. 215–220, 1994. View at Publisher · View at Google Scholar · View at PubMed
  43. B. Charlesworth and C. H. Langley, “The evolution of self-regulated transposition of transposable elements,” Genetics, vol. 112, no. 2, pp. 359–383, 1986. View at Google Scholar
  44. J. Lu and A. G. Clark, “Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila,” Genome Research, vol. 20, no. 2, pp. 212–227, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. J. P. Blumenstiel, “Evolutionary dynamics of transposable elements in a small RNA world,” Trends in Genetics, vol. 27, no. 1, pp. 23–31, 2011. View at Publisher · View at Google Scholar · View at PubMed
  46. G. Deceliere, S. Charles, and C. Biémont, “The dynamics of transposable elements in structured populations,” Genetics, vol. 169, no. 1, pp. 467–474, 2005. View at Publisher · View at Google Scholar · View at PubMed
  47. J. L. Hamrick and M. J. W. Godt, “Effects of life history traits on genetic diversity in plant species,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 351, no. 1345, pp. 1291–1298, 1996. View at Google Scholar
  48. B. Charlesworth and D. Charlesworth, “The population dynamics of transposable elements,” Genetical Research, vol. 42, no. 1, pp. 1–27, 1983. View at Google Scholar
  49. C. H. Langley, J. F. Y. Brookfield, and N. Kaplan, “Transposable elements in Mendelian populations. I. A theory,” Genetics, vol. 104, no. 3, pp. 457–471, 1983. View at Google Scholar
  50. S. I. Wright and D. J. Schoen, “Transposon dynamics and the breeding system,” Genetica, vol. 107, no. 1–3, pp. 139–148, 1999. View at Google Scholar
  51. M. T. Morgan, “Transposable element number in mixed mating populations,” Genetical Research, vol. 77, no. 3, pp. 261–275, 2001. View at Publisher · View at Google Scholar
  52. S. I. Wright, Q. H. Le, D. J. Schoen, and T. E. Bureau, “Population dynamics of an Ac-like transposable element in self- and cross-pollinating Arabidopsis,” Genetics, vol. 158, no. 3, pp. 1279–1288, 2001. View at Google Scholar
  53. S. M. Tam, M. Causse, C. Garchery, H. Burck, C. Mhiri, and M. A. Grandbastien, “The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species,” Journal of Evolutionary Biology, vol. 20, no. 3, pp. 1056–1072, 2007. View at Publisher · View at Google Scholar · View at PubMed
  54. E. S. Dolgin, B. Charlesworth, and A. D. Cutter, “Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes,” Genetics Research, vol. 90, no. 4, pp. 317–329, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. S. I. Wright, R. W. Ness, J. P. Foxe, and S. C. H. Barretty, “Genomic consequences of outcrossing and selfing in plants,” International Journal of Plant Sciences, vol. 169, no. 1, pp. 105–118, 2008. View at Publisher · View at Google Scholar
  56. A. le Rouzic and G. Deceliere, “Models of the population genetics of transposable elements,” Genetical Research, vol. 85, no. 3, pp. 171–181, 2005. View at Publisher · View at Google Scholar · View at PubMed
  57. Y. C. G. Lee and C. H. Langley, “Transposable elements in natural populations of Drosophila melanogaster,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365, no. 1544, pp. 1219–1228, 2010. View at Publisher · View at Google Scholar · View at PubMed
  58. W. R. Rice and B. Holland, “The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen,” Behavioral Ecology and Sociobiology, vol. 41, no. 1, pp. 1–10, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. S. L. Nuismer, J. N. Thompson, and R. Gomulkiewicz, “Gene flow and geographically structured coevolution,” Proceedings of the Royal Society B: Biological Sciences, vol. 266, no. 1419, pp. 605–609, 1999. View at Google Scholar
  60. J. N. Thompson, “Coevolution: the geographic mosaic of coevolutionary arms races,” Current Biology, vol. 15, no. 24, pp. R992–R994, 2005. View at Publisher · View at Google Scholar · View at PubMed
  61. D. M. Castillo, J. C. Mell, K. S. Box, and J. P. Blumenstiel, “Molecular evolution under increasing transposable element burden in Drosophila: a speed limit on the evolutionary arms race,” BMC Evolutionary Biology, vol. 11, no. 1, Article ID 258, 2011. View at Publisher · View at Google Scholar · View at PubMed
  62. D. J. Obbard, K. H. J. Gordon, A. H. Buck, and F. M. Jiggins, “The evolution of RNAi as a defence against viruses and transposable elements,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 364, no. 1513, pp. 99–115, 2009. View at Publisher · View at Google Scholar · View at PubMed
  63. R. A. Mosher, “Maternal control of Pol IV-dependent siRNAs in Arabidopsis endosperm,” New Phytologist, vol. 186, no. 2, pp. 358–364, 2010. View at Publisher · View at Google Scholar · View at PubMed
  64. R. Ishikawa and T. Kinoshita, “Epigenetic programming: the challenge to species hybridization,” Molecular Plant, vol. 2, no. 4, pp. 589–599, 2009. View at Publisher · View at Google Scholar · View at PubMed
  65. N. M. Springer, K. Ying, Y. Fu et al., “Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content,” PLoS Genetics, vol. 5, no. 11, Article ID e1000734, 2009. View at Publisher · View at Google Scholar · View at PubMed
  66. L. Rayburn, D. P. Biradar, D. G. Bullock, and L. M. McMurphy, “Nuclear DNA content in F1 hybrids of maize,” Heredity, vol. 70, pp. 294–300, 1993. View at Publisher · View at Google Scholar
  67. C. Feschotte, “Transposable elements and the evolution of regulatory networks,” Nature Reviews Genetics, vol. 9, no. 5, pp. 397–405, 2008. View at Publisher · View at Google Scholar · View at PubMed
  68. D. van den Broeck, T. Maes, M. Sauer et al., “Transposon display identifies individual transposable elements in high copy number lines,” The Plant Journal, vol. 13, no. 1, pp. 121–129, 1998. View at Publisher · View at Google Scholar · View at PubMed
  69. N. de Setta, A. P. P. Costa, F. R. Lopes, M. A. van Sluys, and C. M. A. Carareto, “Transposon display supports transpositional activity of P elements in species of the saltans group of Drosophila,” Journal of Genetics, vol. 86, no. 1, pp. 37–43, 2007. View at Publisher · View at Google Scholar
  70. S. Schaack, E. J. Pritham, A. Wolf, and M. Lynch, “DNA transposon dynamics in populations of Daphnia pulex with and without sex,” Proceedings of the Royal Society B: Biological Sciences, vol. 277, no. 1692, pp. 2381–2387, 2010. View at Publisher · View at Google Scholar · View at PubMed
  71. Q. H. Le, S. I. Wright, Z. Yu, and T. E. Bureau, “Transposon diversity in Arabidopsis thaliana,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7376–7381, 2000. View at Publisher · View at Google Scholar
  72. M. I. Tenaillon, M. B. Hufford, B. S. Gaut, and J. Ross-Ibarra, “Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians,” Genome Biology and Evolution, vol. 3, no. 1, pp. 219–229, 2011. View at Publisher · View at Google Scholar · View at PubMed
  73. C. Lu, S. S. Tej, S. Luo, C. D. Haudenschild, B. C. Meyers, and P. J. Green, “Elucidation of the small RNA component of the transcriptome,” Science, vol. 309, no. 5740, pp. 1567–1569, 2005. View at Publisher · View at Google Scholar · View at PubMed
  74. A. Girard, R. Sachidanandam, G. J. Hannon, and M. A. Carmell, “A germline-specific class of small RNAs binds mammalian Piwi proteins,” Nature, vol. 442, no. 7099, pp. 199–202, 2006. View at Publisher · View at Google Scholar · View at PubMed
  75. I. R. Henderson, X. Y. Zhang, C. Lu et al., “Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning,” Nature Genetics, vol. 38, no. 6, pp. 721–725, 2006. View at Publisher · View at Google Scholar · View at PubMed
  76. K. D. Kasschau, N. Fahlgren, E. J. Chapman et al., “Genome-wide profiling and analysis of Arabidopsis siRNAs,” PLoS Biology, vol. 5, no. 3, pp. 479–493, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. H. Yin and H. Lin, “An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster,” Nature, vol. 450, no. 7167, pp. 304–308, 2007. View at Publisher · View at Google Scholar · View at PubMed
  78. R. C. Day, U. Grossniklaus, and R. C. Macknight, “Be more specific! laser-assisted microdissection of plant cells,” Trends in Plant Science, vol. 10, no. 8, pp. 397–406, 2005. View at Publisher · View at Google Scholar · View at PubMed