Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 708980, 11 pages
http://dx.doi.org/10.1155/2012/708980
Review Article

Repeated Evolution of Testis-Specific New Genes: The Case of Telomere-Capping Genes in Drosophila

1UMR 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
2UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France

Received 16 February 2012; Accepted 9 May 2012

Academic Editor: Hideki Innan

Copyright © 2012 Raphaëlle Dubruille et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kaessmann, “Origins, evolution, and phenotypic impact of new genes,” Genome Research, vol. 20, no. 10, pp. 1313–1326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. H. White-Cooper and N. Bausek, “Evolution and spermatogenesis,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1546, pp. 1465–1480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Long and C. H. Langley, “Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila,” Science, vol. 260, no. 5104, pp. 91–95, 1993. View at Google Scholar · View at Scopus
  4. J. R. McCarrey and K. Thomas, “Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene,” Nature, vol. 326, no. 6112, pp. 501–505, 1987. View at Google Scholar · View at Scopus
  5. E. Betrán, K. Thornton, and M. Long, “Retroposed new genes out of the X in Drosophila,” Genome Research, vol. 12, no. 12, pp. 1854–1859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. C. Marques, I. Dupanloup, N. Vinckenbosch, A. Reymond, and H. Kaessmann, “Emergence of young human genes after a burst of retroposition in primates,” PLoS Biology, vol. 3, no. 11, p. e357, 2005. View at Google Scholar · View at Scopus
  7. D. J. Begun, H. A. Lindfors, A. D. Kern, and C. D. Jones, “Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade,” Genetics, vol. 176, no. 2, pp. 1131–1137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. T. Chen, H. C. Cheng, D. A. Barbash, and H. P. Yang, “Evolution of hydra, a recently evolved testis-expressed gene with nine alternative first exons in Drosophila melanogaster,” PLoS Genetics, vol. 3, no. 7, p. e107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. J. Heinen, F. Staubach, D. Häming, and D. Tautz, “Emergence of a new gene from an intergenic region,” Current Biology, vol. 19, no. 18, pp. 1527–1531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. T. Levine, C. D. Jones, A. D. Kern, H. A. Lindfors, and D. J. Begun, “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9935–9939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. Paulding, M. Ruvolo, and D. A. Haber, “The Tre2 (USP6) oncogene is a hominoid-specific gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2507–2511, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. X. She, J. E. Horvath, Z. Jiang et al., “The structure and evolution of centromeric transition regions within the human genome,” Nature, vol. 430, no. 7002, pp. 857–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Gallach and E. Betrán, “Intralocus sexual conflict resolved through gene duplication,” Trends in Ecology & Evolution, vol. 26, no. 5, pp. 222–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Gallach, S. Domingues, and E. Betran, “Gene duplication and the genome distribution of sex-biased genes,” International Journal of Evolutionary Biology, vol. 2011, Article ID 989438, 20 pages, 2011. View at Publisher · View at Google Scholar
  15. W. G. Kelly, C. E. Schaner, A. F. Dernburg et al., “X-chromosome silencing in the germline of C. elegans,” Development, vol. 129, no. 2, pp. 479–492, 2002. View at Google Scholar · View at Scopus
  16. J. M. Turner, “Meiotic sex chromosome inactivation,” Development, vol. 134, no. 10, pp. 1823–1831, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. J. Emerson, H. Kaessmann, E. Betrán, and M. Long, “Extensive gene traffic on the mammalian X chromosome,” Science, vol. 303, no. 5657, pp. 537–540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Kaessmann, N. Vinckenbosch, and M. Long, “RNA-based gene duplication: mechanistic and evolutionary insights,” Nature Reviews Genetics, vol. 10, no. 1, pp. 19–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Potrzebowski, N. Vinckenbosch, A. C. Marques, F. Chalmel, B. Jégou, and H. Kaessmann, “Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes,” PLoS Biology, vol. 6, no. 4, p. e80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. D. Vibranovski, Y. Zhang, and M. Long, “General gene movement off the X chromosome in the Drosophila genus,” Genome Research, vol. 19, no. 5, pp. 897–903, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Hense, J. F. Baines, and J. Parsch, “X chromosome inactivation during Drosophila spermatogenesis,” PLoS Biology, vol. 5, no. 10, p. e273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. D. Meiklejohn, E. L. Landeen, J. M. Cook, S. B. Kingan, and D. C. Presgraves, “Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation,” PLoS Biology, vol. 9, no. 8, Article ID e1001126, 2011. View at Google Scholar
  23. R. P. Meisel, M. V. Han, and M. W. Hahn, “A complex suite of forces drives gene traffic from Drosophila X chromosomes,” Genome Biology & Evolution, vol. 1, pp. 176–188, 2009. View at Google Scholar
  24. L. M. Mikhaylova and D. I. Nurminsky, “Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome,” BMC Biology, vol. 9, article 29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. D. Vibranovski, H. F. Lopes, T. L. Karr, and M. Long, “Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes,” PLoS Genetics, vol. 5, no. 11, Article ID e1000731, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. E. Zhang, M. D. Vibranovski, B. H. Krinsky, and M. Long, “Age-dependent chromosomal distribution of male-biased genes in Drosophila,” Genome Research, vol. 20, no. 11, pp. 1526–1533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Bachtrog, N. R. Toda, and S. Lockton, “Dosage compensation and demasculinization of X chromosomes in Drosophila,” Current Biology, vol. 20, no. 16, pp. 1476–1481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Vicoso and B. Charlesworth, “The deficit of male-biased genes on the D. melanogaster X chromosome is expression-dependent: a consequence of dosage compensation?” Journal of Molecular Evolution, vol. 68, no. 5, pp. 576–583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Straub and P. B. Becker, “Dosage compensation: the beginning and end of generalization,” Nature Reviews Genetics, vol. 8, no. 1, pp. 47–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Deng, J. B. Hiatt, D. K. Nguyen et al., “Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster,” Nature Genetics, vol. 43, no. 12, pp. 1179–1185, 2011. View at Google Scholar
  31. T. Connallon and L. L. Knowles, “Intergenomic conflict revealed by patterns of sex-biased gene expression,” Trends in Genetics, vol. 21, no. 9, pp. 495–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. W. R. Rice, “Sexually antagonistic genes: experimental evidence,” Science, vol. 256, no. 5062, pp. 1436–1439, 1992. View at Google Scholar · View at Scopus
  33. R. Bonduriansky and S. F. Chenoweth, “Intralocus sexual conflict,” Trends in Ecology & Evolution, vol. 24, no. 5, pp. 280–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Zhang, D. Sturgill, M. Parisi, S. Kumar, and B. Oliver, “Constraint and turnover in sex-biased gene expression in the genus Drosophila,” Nature, vol. 450, no. 7167, pp. 233–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Gallach, C. Chandrasekaran, and E. Betrán, “Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila,” Genome Biology & Evolution, vol. 2, pp. 835–850, 2010. View at Google Scholar · View at Scopus
  36. N. Phadnis, E. Hsieh, and H. S. Malik, “Birth, death and replacement of karyopherins in Drosophila,” Molecular Biology & Evolution, vol. 29, no. 5, pp. 1429–1440, 2012. View at Publisher · View at Google Scholar
  37. S. Kimmins and P. Sassone-Corsi, “Chromatin remodelling and epigenetic features of germ cells,” Nature, vol. 434, no. 7033, pp. 583–589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. K. C. Kleene, “A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells,” Mechanisms of Development, vol. 106, no. 1-2, pp. 3–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. M. T. Fuller, “Spermatogenesis,” in The Development of Drosophila Melanogaster, M. Bate and A. M. Arias, Eds., pp. 71–147, Cold Spring Harbor Laboratory Press, 1993. View at Google Scholar
  40. K. C. Kleene, “Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells,” Developmental Biology, vol. 277, no. 1, pp. 16–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. J. P. Murnane, “Telomere dysfunction and chromosome instability,” Mutation Research, vol. 730, no. 1-2, pp. 28–36, 2012. View at Google Scholar
  42. R. J. O'Sullivan and J. Karlseder, “Telomeres: protecting chromosomes against genome instability,” Nature Reviews Molecular Cell Biology, vol. 11, no. 3, pp. 171–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Palm and T. de Lange, “How shelterin protects mammalian telomeres,” Annual Review of Genetics, vol. 42, pp. 301–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. L. Pardue and P. G. DeBaryshe, “Retrotransposons that maintain chromosome ends,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 51, pp. 20317–20324, 2011. View at Google Scholar
  45. S. Pimpinelli, “Drosophila telomeres,” in Telomeres, T. L. De Lange and V. Blackburn, Eds., pp. 433–459, Cold Spring Harbor Laboratory Press, 2nd edition, 2006. View at Google Scholar
  46. G. D. Raffa, L. Ciapponi, G. Cenci, and M. Gatti, “Terminin: a protein complex that mediates epigenetic maintenance of Drosophila telomeres,” Nucleus, vol. 2, no. 5, pp. 383–391, 2011. View at Google Scholar
  47. Y. S. Rong, “Telomere capping in Drosophila: dealing with chromosome ends that most resemble DNA breaks,” Chromosoma, vol. 117, no. 3, pp. 235–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Cenci, G. Siriaco, G. D. Raffa, R. Kellum, and M. Gatti, “The drosophila HOAP protein in required for telomere capping,” Nature Cell Biology, vol. 5, no. 1, pp. 82–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Fanti, G. Giovinazzo, M. Berloco, and S. Pimpinelli, “The heterochromatin protein 1 prevents telomere fusions in Drosophila,” Molecular Cell, vol. 2, no. 5, pp. 527–538, 1998. View at Google Scholar · View at Scopus
  50. G. Gao, J. C. Walser, M. L. Beaucher et al., “HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner,” The EMBO Journal, vol. 29, no. 4, pp. 819–829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Perrini, L. Piacentini, L. Fanti et al., “HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila,” Molecular Cell, vol. 15, no. 3, pp. 467–476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. G. D. Raffa, D. Raimondo, C. Sorino et al., “Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex,” Genes & Development, vol. 24, no. 15, pp. 1596–1601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. G. D. Raffa, G. Siriaco, S. Cugusi et al., “The Drosophila modigliani (moi) gene encodes a HOAP-interacting protein required for telomere protection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2271–2276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Fuyama, “Gynogenesis in Drosophila,” The Japanese Journal of Genetics, vol. 59, no. 1, pp. 91–96, 1984. View at Google Scholar · View at Scopus
  55. B. Loppin, D. Lepetit, S. Dorus, P. Couble, and T. L. Karr, “Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability,” Current Biology, vol. 15, no. 2, pp. 87–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. G. K. Yasuda, G. Schubiger, and B. T. Wakimoto, “Genetic characterization of ms(3)K81, a paternal effect gene of Drosophila melanogaster,” Genetics, vol. 140, no. 1, pp. 219–229, 1995. View at Google Scholar · View at Scopus
  57. R. Dubruille, G. A. Orsi, L. Delabaere et al., “Specialization of a drosophila capping protein essential for the protection of sperm telomeres,” Current Biology, vol. 20, no. 23, pp. 2090–2099, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Gao, Y. Cheng, N. Wesolowska, and Y. S. Rong, “Paternal imprint essential for the inheritance of telomere identity in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 4932–4937, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Dubruille and B. Loppin, “Epigenetic maintenance of telomere identity in Drosophila: buckle up for the sperm ride,” Cell Cycle, vol. 10, no. 7, pp. 1037–1042, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Rathke, W. M. Baarends, S. Jayaramaiah-Raja, M. Bartkuhn, R. Renkawitz, and R. Renkawitz-Pohl, “Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila,” Journal of Cell Science, vol. 120, part 9, pp. 1689–1700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan, and J. Postlethwait, “Preservation of duplicate genes by complementary, degenerative mutations,” Genetics, vol. 151, no. 4, pp. 1531–1545, 1999. View at Google Scholar · View at Scopus
  62. Y. Yang, Z. C. Hou, Y. H. Qian, H. Kang, and Q. T. Zeng, “Increasing the data size to accurately reconstruct the phylogenetic relationships between nine subgroups of the Drosophila melanogaster species group (Drosophilidae, Diptera),” Molecular Phylogenetics & Evolution, vol. 62, no. 1, pp. 214–223, 2012. View at Google Scholar
  63. D. Vermaak and H. S. Malik, “Multiple roles for heterochromatin protein 1 genes in drosophila,” Annual Review of Genetics, vol. 43, pp. 467–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. K. J. Schmid and D. Tautz, “A screen for fast evolving genes from Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9746–9750, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Reis, S. Sousa-Guimarães, C. P. Vieira, C. E. Sunkel, and J. Vieira, “Drosophila genes that affect meiosis duration are among the meiosis related genes that are more often found duplicated,” PLoS ONE, vol. 6, no. 3, Article ID e17512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Chen, Y. E. Zhang, and M. Long, “New genes in Drosophila quickly become essential,” Science, vol. 330, no. 6011, pp. 1682–1685, 2010. View at Publisher · View at Google Scholar · View at Scopus