Table of Contents
International Journal of Evolutionary Biology
Volume 2012, Article ID 780169, 12 pages
http://dx.doi.org/10.1155/2012/780169
Research Article

Phylogeographic Diversity of the Lower Central American Cichlid Andinoacara coeruleopunctatus (Cichlidae)

1Biology Department, Wheaton College, 26 East Main Street, Norton, MA 02766, USA
2Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
3Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Panama

Received 15 February 2012; Accepted 29 June 2012

Academic Editor: R. Craig Albertson

Copyright © 2012 S. Shawn McCafferty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Ricklefs, “Community diversity: relative roles of local and regional processes,” Science, vol. 235, no. 4785, pp. 167–171, 1987. View at Google Scholar · View at Scopus
  2. R. E. Ricklefs, “A comprehensive framework for global patterns in biodiversity,” Ecology Letters, vol. 7, no. 1, pp. 1–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Ricklefs and D. Schluter, Species Diversity in Ecological Communities: Historical and Geographical Perspectives, University of Chicago Press, Chicago, Ill, USA, 1993.
  4. S. A. Smith and E. Bermingham, “The biogeography of lower Mesoamerican freshwater fishes,” Journal of Biogeography, vol. 32, no. 10, pp. 1835–1854, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Cavender-Bares, K. H. Kozak, P. V. A. Fine, and S. W. Kembel, “The merging of community ecology and phylogenetic biology,” Ecology Letters, vol. 12, no. 7, pp. 693–715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. P. J. Unmack, “Biogeography of Australian freshwater fishes,” Journal of Biogeography, vol. 28, no. 9, pp. 1053–1089, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. C. P. Burridge, D. Craw, and J. M. Waters, “An empirical test of freshwater vicariance via river capture,” Molecular Ecology, vol. 16, no. 9, pp. 1883–1895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. P. Jones and J. B. Johnson, “Phylogeography of the livebearer Xenophallus umbratilis (Teleostei: Poeciliidae): Glacial cycles and sea level change predict diversification of a freshwater tropical fish,” Molecular Ecology, vol. 18, no. 8, pp. 1640–1653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. B. Schultz, D. A. Ierodiaconou, S. A. Smith et al., “Sea-level changes and palaeo-ranges: reconstruction of ancient shorelines and river drainages and the phylogeography of the Australian land crayfish Engaeus sericatus Clark (Decapoda: Parastacidae),” Molecular Ecology, vol. 17, no. 24, pp. 5291–5314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Waters, D. L. Rowe, S. Apte et al., “Geological dates and molecular rates: rapid divergence of rivers and their biotas,” Systematic Biology, vol. 56, no. 2, pp. 271–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. P. Burridge, D. Craw, D. C. Jack, T. M. King, and J. M. Waters, “Does fish ecology predict dispersal across a river drainage divide?” Evolution, vol. 62, no. 6, pp. 1484–1499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. G. Marshall, R. F. Butler, R. E. Drake, G. H. Curtis, and R. H. Tedford, “Calibration of the Great American interchange,” Science, vol. 204, no. 4390, pp. 272–279, 1979. View at Google Scholar · View at Scopus
  13. F. Stehli and S. Webb, The Great American Biotic Interchange, Plenum Press, New York, NY, USA, 1985.
  14. A. Coates and J. Obando, “The geologic evolution of the central american isthmus,” in Evolution and Environment in Tropical America, J. Jackson, A. Budd, and A. Coates, Eds., University of Chicago Press, Chicago, Ill, USA, 1996. View at Google Scholar
  15. L. G. Marshall, S. D. Webb, J. J. Sepkoski Jr., and D. M. Raup, “Mammalian evolution and the great American interchange,” Science, vol. 215, no. 4538, pp. 1351–1357, 1982. View at Google Scholar · View at Scopus
  16. R. Miller, “Geographical distribution of Central American freshwater fishes,” Copeia, vol. 1966, no. 4, pp. 773–802, 1966. View at Google Scholar
  17. G. Myers, “Derivation of the freshwater fish fauna of Central America,” Copeia, vol. 1966, no. 4, pp. 766–773, 1966. View at Publisher · View at Google Scholar
  18. W. Bussing, “Geographic distribution of the San Juan ichthyofauna of Central America with remarks on its origin and ecology,” in Investigations of the Ichthyofauna of Nicaraguan Lakes, T. Thorson, Ed., pp. 157–175, University of Nebraska Press, Lincoln, Neb, USA, 1976. View at Google Scholar
  19. W. Bussing, “Patterns of distribution of the Central American ichthyofauna,” in The Great American Biotic Interchange, F. Stehli and S. Webb, Eds., pp. 453–473, Plenum Publishing Corporation, 1985. View at Google Scholar
  20. E. Bermingham and A. Martin, “Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America,” Molecular Ecology, vol. 7, no. 4, pp. 499–517, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. A. P. Martin and E. Bermingham, “Systematics and evolution of lower Central American Cichlids Inferred from analysis of cytochrome b gene sequences,” Molecular Phylogenetics and Evolution, vol. 9, no. 2, pp. 192–203, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. A. P. Martin and E. Bermingham, “Regional endemism and cryptic species revealed by molecular and morphological analysis of a widespread species of Neotropical catfish,” Proceedings of the Royal Society B, vol. 267, no. 1448, pp. 1135–1141, 2000. View at Google Scholar · View at Scopus
  23. A. Perdices, I. Doadrio, and E. Bermingham, “Evolutionary history of the synbranchid eels (Teleostei: Synbranchidae) in Central America and the Caribbean islands inferred from their molecular phylogeny,” Molecular Phylogenetics and Evolution, vol. 37, no. 2, pp. 460–473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. R. G. Reeves and E. Bermingham, “Colonization, population expansion, and lineage turnover: phylogeography of Mesoamerican characiform fish,” Biological Journal of the Linnean Society, vol. 88, no. 2, pp. 235–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Myers, “Salt-tolerance of fresh-water fish groups in relation to zoogeographical problems,” Bijdragen tot de Dierkunde, vol. 28, pp. 315–322, 1949. View at Google Scholar
  26. G. Seutin, B. White, and P. Boag, “Preservation of avian blood and tissue samples for DNA analyses,” Canadian Journal of Zoology, vol. 69, no. 1, pp. 82–90, 1991. View at Publisher · View at Google Scholar
  27. E. Bermingham, H. Banford, A. Martin, and V. Aswani, “Smithsonian tropical research insititute neotropical fish collections,” in Neotropical Fish Collections, L. Malabarba L, Ed., Museo de Ciencias e Tecnologia-PUCRS, Puerto Alegre, Brazil, 1997. View at Google Scholar
  28. B. Quenouille, E. Bermingham, and S. Planes, “Molecular systematics of the damselfishes (Teleostei: Pomacentridae): bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences,” Molecular Phylogenetics and Evolution, vol. 31, no. 1, pp. 66–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Musilová, O. Říčan, K. Janko, and J. Novák, “Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae),” Molecular Phylogenetics and Evolution, vol. 46, no. 2, pp. 659–672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Musilová, O. Říčan, and J. Novák, “Phylogeny of the neotropical cichlid fish tribe cichlasomatini (Teleostei: Cichlidae) based on morphological and molecular data, with the description of a new genus,” Journal of Zoological Systematics and Evolutionary Research, vol. 47, no. 3, pp. 234–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Zwickl, Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion, [Ph.D. thesis], The University of Texas at Austin, 2006.
  32. D. Posada, “jModelTest: phylogenetic model averaging,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1253–1256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Guindon and O. Gascuel, “A Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood,” Systematic Biology, vol. 52, no. 5, pp. 696–704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Sukumaran and M. T. Holder, “DendroPy: a python library for phylogenetic computing,” Bioinformatics, vol. 26, no. 12, pp. 1569–1571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Swofford, PAUP: Phylogenetic Analysis Using Parsimony. Version 3. 1, Illinois Natural History Survey, Champaign, Ill, USA, 1993.
  37. A. J. Drummond and A. Rambaut, “BEAST: bayesian evolutionary analysis by sampling trees,” BMC Evolutionary Biology, vol. 7, no. 1, p. 214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. S. McCafferty, E. Bermingham, B. Quenouille, S. Planes, G. Hoelzer, and K. Asoh, “Historical biogeography and molecular systematics of the Indo-Pacific genus Dascyllus (Teleostei: Pomacentridae),” Molecular Ecology, vol. 11, no. 8, pp. 1377–1392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Bermingham, S. McCafferty, and A. Martin, “Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus,” in Molecular Systematics of Fishes, T. Kocher and C. Stepien, Eds., pp. 113–138, Academic Press, New York, NY, USA, 1997. View at Google Scholar
  40. R. Abell, M. L. Thieme, C. Revenga et al., “Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation,” BioScience, vol. 58, no. 5, pp. 403–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. W. J. Murphy and G. E. Collier, “Phylogenetic relationships within the aplocheiloid fish genus Rivulus (Cyprinodontiformes, Rivulidae): implications for Caribbean and Central American biogeography,” Molecular Biology and Evolution, vol. 13, no. 5, pp. 642–649, 1996. View at Google Scholar · View at Scopus
  42. T. Hrbek, J. Seckinger, and A. Meyer, “A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes,” Molecular Phylogenetics and Evolution, vol. 43, no. 3, pp. 986–998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. G. A. Concheiro Pérez, O. Říčan, G. Ortí, E. Bermingham, I. Doadrio, and R. Zardoya, “Phylogeny and biogeography of 91 species of heroine cichlids (Teleostei: Cichlidae) based on sequences of the cytochrome b gene,” Molecular Phylogenetics and Evolution, vol. 43, no. 1, pp. 91–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Montes, A. Cardona, R. McFadden, S. Moron, C. Silva, S. Restrepo-Moreno et al., “Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure,” Geological Society of America Bulletin, vol. 124, no. 5-6, p. 780, 2012. View at Publisher · View at Google Scholar
  45. S. A. Smith, G. Bell, and E. Bermingham, “Cross-Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages,” Proceedings of the Royal Society B, vol. 271, no. 1551, pp. 1889–1896, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. G. Boileau, P. D. N. Hebert, and S. S. Schwartz, “Non-equilibrium gene frequency divergence: persistent founder effects in natural populations,” Journal of Evolutionary Biology, vol. 5, no. 1, pp. 25–39, 1992. View at Google Scholar · View at Scopus
  47. L. de Meester, A. Gómez, B. Okamura, and K. Schwenk, “The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms,” Acta Oecologica, vol. 23, no. 3, pp. 121–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. S. J. Adamowicz, A. Petrusek, J. K. Colbourne, P. D. N. Hebert, and J. D. S. Witt, “The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus,” Molecular Phylogenetics and Evolution, vol. 50, no. 3, pp. 423–436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Louette, J. Vanoverbeke, R. Ortells, and L. de Meester, “The founding mothers: the genetic structure of newly established Daphnia populations,” Oikos, vol. 116, no. 5, pp. 728–741, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Muñoz, A. Gómez, A. J. Green, J. Figuerola, F. Amat, and C. Rico, “Phylogeography and local endemism of the native Mediterranean brine shrimp Artemia salina (Branchiopoda: Anostraca),” Molecular Ecology, vol. 17, no. 13, pp. 3160–3177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. J. Shulman, J. C. Ogden, J. P. Ebersole, W. N. McFarland, S. L. Miller, and N. G. Wolf, “Priority effects in the recruitment of juvenile coral reef fishes,” Ecology, vol. 64, no. 6, pp. 1508–1513, 1983. View at Google Scholar · View at Scopus
  52. G. R. Almany, “Priority effects in coral reef fish communities of the great barrier reef,” Ecology, vol. 85, no. 10, pp. 2872–2880, 2004. View at Google Scholar · View at Scopus
  53. A. D. Irving, J. E. Tanner, and B. K. McDonald, “Priority effects on faunal assemblages within artificial seagrass,” Journal of Experimental Marine Biology and Ecology, vol. 340, no. 1, pp. 40–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Louette and L. de Meester, “Predation and priority effects in experimental zooplankton communities,” Oikos, vol. 116, no. 3, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. L. de Meester, G. Louette, C. Duvivier, C. van Damme, and E. Michels, “Genetic composition of resident populations influences establishment success of immigrant species,” Oecologia, vol. 153, no. 2, pp. 431–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. J. Bohonak and D. G. Jenkins, “Ecological and evolutionary significance of dispersal by freshwater invertebrates,” Ecology Letters, vol. 6, no. 8, pp. 783–796, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. J. M. Waters, “Competitive exclusion: phylogeography's “elephant in the room”?” Molecular Ecology, vol. 20, no. 21, pp. 4388–4394, 2011. View at Publisher · View at Google Scholar · View at Scopus