Table of Contents
International Journal of Evolutionary Biology
Volume 2012, Article ID 821645, 9 pages
http://dx.doi.org/10.1155/2012/821645
Review Article

Novel Genes from Formation to Function

1Centro de Biologia Ambiental (CBA), Faculdade de Ciências da Universidade de Lisboa, 1749 Lisboa, Portugal
2Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Blindern, 0316 Oslo, Norway
3Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
4Centre for Environmental and Marine Studies (CESAM), Faculdade de Ciências da Universidade de Lisboa, 1749 Lisboa, Portugal

Received 7 February 2012; Accepted 26 April 2012

Academic Editor: Frédéric Brunet

Copyright © 2012 Rita Ponce et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kaul, H. L. Koo, J. Jenkins et al., “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana,” Nature, vol. 408, no. 6814, pp. 796–815, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. G. M. Rubin, M. D. Yandell, J. R. Wortman et al., “Comparative genomics of the eukaryotes,” Science, vol. 287, no. 5461, pp. 2204–2215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. . Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton et al., “The sequence of the human genome,” Science, vol. 291, pp. 1304–1351, 2001. View at Google Scholar
  4. R. D. Morin, E. Chang, A. Petrescu et al., “Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling,” Genome Research, vol. 16, no. 7, pp. 947–803, 2006. View at Google Scholar · View at Scopus
  5. Z. Gu, D. Nicolae, H. H. S. Lu, and W. H. Li, “Rapid divergence in expression between duplicate genes inferred from microarray data,” Trends in Genetics, vol. 18, no. 12, pp. 609–613, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Zhang, Z. Gu, and W. H. Li, “Different evolutionary patterns between young duplicate genes in the human genome,” Genome Biology, vol. 4, no. 9, article R56, 2003. View at Google Scholar · View at Scopus
  7. L. Bu, U. Bergthorsson, and V. Katju, “Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiae gene duplicates,” BMC Evolutionary Biology, vol. 11, article 279, 2011. View at Google Scholar
  8. M. Lynch and J. S. Conery, “The evolutionary fate and consequences of duplicate genes,” Science, vol. 290, no. 5494, pp. 1151–1155, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Gao and M. Lynch, “Ubiquitous internal gene duplication and intron creation in eukaryotes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20818–20823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kanazawa, B. Liu, F. Kong, S. Arase, and J. Abe, “Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean,” Journal of Molecular Evolution, vol. 69, no. 2, pp. 164–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan, and J. Postlethwait, “Preservation of duplicate genes by complementary, degenerative mutations,” Genetics, vol. 151, no. 4, pp. 1531–1545, 1999. View at Google Scholar · View at Scopus
  12. H. Innan and F. Kondrashov, “The evolution of gene duplications: classifying and distinguishing between models,” Nature Reviews Genetics, vol. 11, no. 2, pp. 97–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. B. S. Haldane, The Causes of Evolution, Princeton University Press, 1990.
  14. C. B. Bridges, “The Bar “gene” a duplication,” Science, vol. 83, no. 2148, pp. 210–211, 1936. View at Google Scholar · View at Scopus
  15. H. J. Muller, “Bar duplication,” Science, vol. 83, no. 2161, pp. 528–530, 1936. View at Google Scholar · View at Scopus
  16. S. Ohno, Evolution by Gene Duplication, Springer, 1970.
  17. V. F. Irish and A. Litt, “Flower development and evolution: gene duplication, diversification and redeployment,” Current Opinion in Genetics and Development, vol. 15, no. 4, pp. 454–460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Ohta, “Role of gene duplication in evolution,” Genome, vol. 31, no. 1, pp. 304–310, 1989. View at Google Scholar · View at Scopus
  19. J. S. Taylor and J. Raes, “Duplication and divergence: the evolution of new genes and old ideas,” Annual Review of Genetics, vol. 38, pp. 615–643, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Zhang, “Evolution by gene duplication: an update,” Trends in Ecology and Evolution, vol. 18, no. 6, pp. 292–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Long, E. Betrán, K. Thornton, and W. Wang, “The origin of new genes: glimpses from the young and old,” Nature Reviews Genetics, vol. 4, no. 11, pp. 865–875, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. C. D. Jones, A. W. Custer, and D. J. Begun, “Origin and evolution of a chimeric fusion gene in Drosophila subobscura D. madeirensis and D. guanche,” Genetics, vol. 170, no. 1, pp. 207–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Wang, H. Yu, and M. Long, “Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species,” Nature Genetics, vol. 36, no. 5, pp. 523–527, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Kaessmann, “Origins, evolution, and phenotypic impact of new genes,” Genome Research, vol. 20, no. 10, pp. 1313–1326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. G. A. Wray, “The evolutionary significance of cis-regulatory mutations,” Nature Reviews Genetics, vol. 8, no. 3, pp. 206–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. J. Wittkopp, “Evolution of cis-regulatory sequence and function in Diptera,” Heredity, vol. 97, no. 3, pp. 139–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. B. Carroll, “Evolution at two levels: on genes and form,” PLoS Bology, vol. 3, no. 7, p. e245, 2005. View at Google Scholar · View at Scopus
  28. F. Rodriguez-Trelles, R. Tarríol, and F. J. Ayala, “Evolution of cis-regulatory regions versus codifying regions,” International Journal of Developmental Biology, vol. 47, no. 7-8, pp. 665–673, 2003. View at Google Scholar · View at Scopus
  29. R. L. Rogers, T. Bedford, and D. L. Hart, “Formation and longevity of chimeric and duplicate genes in Drosophila melanogaster,” Genetics, vol. 181, no. 1, pp. 313–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Zhou, G. Zhang, Y. Zhang et al., “On the origin of new genes in Drosophila,” Genome Research, vol. 18, no. 9, pp. 1446–1455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. R. L. Rogers and D. L. Hartl, “Chimeric genes as a source of rapid evolution in Drosophila melanogaster,” Molecular Biology and Evolution, vol. 29, no. 2, pp. 517–529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Yang, J. R. Arguello, X. Li et al., “Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila,” PLoS Genetics, vol. 4, no. 1, article e3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. A. Petrov and D. L. Hartl, “High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups,” Molecular Biology and Evolution, vol. 15, no. 3, pp. 293–302, 1998. View at Google Scholar · View at Scopus
  34. D. A. Petrov, E. R. Lozovskaya, and D. L. Harti, “High intrinsic rate of DNA loss in Drosophila,” Nature, vol. 384, no. 6607, pp. 346–349, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. Petrov and D. L. Hartl, “Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila,” Gene, vol. 205, no. 1-2, pp. 279–289, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. M. E. Johnson, L. Viggiano, J. A. Bailey et al., “Positive selection of a gene family during the emergence of humans and African apes,” Nature, vol. 413, no. 6855, pp. 514–519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. T. Levine, C. D. Jones, A. D. Kern, H. A. Lindfors, and D. J. Begun, “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9935–9939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. J. A. J. Heinen, F. Staubach, D. Häming, and D. Tautz, “Emergence of a New Gene from an Intergenic Region,” Current Biology, vol. 19, no. 18, pp. 1527–1531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Toll-Riera, N. Bosch, N. Bellora et al., “Origin of primate orphan genes: a comparative genomics approach,” Molecular Biology and Evolution, vol. 26, no. 3, pp. 603–612, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. R. L. Rogers, T. Bedford, A. M. Lyons, and D. L. Hartl, “Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 24, pp. 10943–10948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Fan and M. Long, “A new retroposed gene in Drosophila heterochromatin detected by microarray-based comparative genomic hybridization,” Journal of Molecular Evolution, vol. 64, no. 2, pp. 272–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. J. R. Arguello, Y. Chen, S. Yang, W. Wang, and M. Long, “Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila,” PLoS Genetics, vol. 2, no. 5, article e77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Wang, J. Zhang, C. Alvarez, A. Llopart, and M. Long, “The origin of the jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster,” Molecular Biology and Evolution, vol. 17, no. 9, pp. 1294–1301, 2000. View at Google Scholar · View at Scopus
  44. W. Wang, F. G. Brunet, E. Nevo, and M. Long, “Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 7, pp. 4448–4453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Long, M. Deutsch, W. Wang, E. Betrán, F. G. Brunet, and J. Zhang, “Origin of new genes: evidence from experimental and computational analyses,” Genetica, vol. 118, no. 2-3, pp. 171–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. C. D. Jones and D. J. Begun, “Parallel evolution of chimeric fusion genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11373–11378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. D. I. Nurminsky, M. V. Nurminskaya, D. De Aguiar, and D. L. Hartl, “Selective sweep of a newly evolved sperm-specific gene in Drosophila,” Nature, vol. 396, no. 6711, pp. 572–575, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Ponce, “The use of a non-LTR element to date the formation of the Sdic gene cluster,” Genetica, vol. 131, no. 3, pp. 315–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. S.-D. Yeh, T. Do, C. Chan et al., “Functional evidence that a recently evolved Drosophila sperm-specific gene boosts sperm competition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 6, pp. 2043–2048, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Betrán and M. Long, “Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection,” Genetics, vol. 164, no. 3, pp. 977–988, 2003. View at Google Scholar · View at Scopus
  51. Y. Ding, L. Zhao, S. Yang et al., “A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes,” PLoS Genetics, vol. 6, no. 12, article e1001255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Chen, H. Yang, B. H. Krinsky, A. Zhang, and M. Long, “Roles of young serine-endopeptidase genes in survival and reproduction revealed rapid evolution of phenotypic effects at adult stages,” Fly, vol. 5, pp. 345–351, 2011. View at Google Scholar
  53. S. T. Chen, H. C. Cheng, D. A. Barbash, and H. P. Yang, “Evolution of hydra, a recently evolved testis-expressed gene with nine alternative first exons in Drosophila melanogaster,” PLoS Genetics, vol. 3, no. 7, article e107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. D. V. Babushok, K. Ohshima, E. M. Ostertag et al., “A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids,” Genome Research, vol. 17, no. 8, pp. 1129–1138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. D. T. Sullivan, W. T. Starmer, S. W. Curtiss, M. Menotti-Raymond, and J. Yum, “Unusual molecular evolution of an Adh pseudogene in Drosophila,” Molecular Biology and Evolution, vol. 11, no. 3, pp. 443–458, 1994. View at Google Scholar · View at Scopus
  56. C. T. Ting, S. C. Tsaur, M. L. Wu, and C. I. Wu, “A rapidly evolving homeobox at the site of a hybrid sterility gene,” Science, vol. 282, no. 5393, pp. 1501–1504, 1998. View at Google Scholar · View at Scopus
  57. C. T. Ting, S. C. Tsaur, S. Sun et al., “Gene duplication and speciation in Drosophila: evidence from the Odysseus locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 33, pp. 12232–12235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Loppin, D. Lepetit, S. Dorus, P. Couble, and T. L. Karr, “Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability,” Current Biology, vol. 15, no. 2, pp. 87–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Dubruille, G. A. Orsi, L. Delabaere et al., “Specialization of a drosophila capping protein essential for the protection of sperm telomeres,” Current Biology, vol. 20, no. 23, pp. 2090–2099, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Matsuo, “Rapid evolution of two odorant-binding protein genes, Obp57d and Obp57e, in the Drosophila melanogaster species group,” Genetics, vol. 178, no. 2, pp. 1061–1072, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Harada, J. Nakagawa, T. Asano et al., “Functional evolution of duplicated odorant-binding protein genes, Obp57d and Obp57e, in Drosophila,” PLoS ONE, vol. 7, no. 1, article e29710, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. E. Betrán, W. Wang, L. Jin, and M. Long, “Evolution of the Phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene,” Molecular Biology and Evolution, vol. 19, no. 5, pp. 654–663, 2002. View at Google Scholar · View at Scopus
  63. R. J. Kulathinal, S. A. Sawyer, C. D. Bustamante, D. Nurminsky, R. Ponce, and J. M. Ranz, “Selective sweep in the evolution of a new sperm-specific gene in Drosophila,” in Selective Sweep, D. Nurminsky, Ed., pp. 22–33, Springer, Boston, Mass, USA, 2005. View at Google Scholar
  64. R. Nielsen, C. Bustamante, A. G. Clark et al., “A scan for positively selected genes in the genomes of humans and chimpanzees,” PLoS Bology, vol. 3, no. 6, article e170, 2005. View at Google Scholar · View at Scopus
  65. E. Betrán, K. Thornton, and M. Long, “Retroposed new genes out of the X in Drosophila,” Genome Research, vol. 12, no. 12, pp. 1854–1859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. J. B. S. Haldane, The Causes of Evolution, Princeton University Press, 1990.
  67. M. J. Madison-Villar and P. Michalak, “Misexpression of testicular microRNA in sterile Xenopus hybrids points to tetrapod-specific microRNAs associated with male fertility,” Journal of Molecular Evolution, vol. 73, pp. 316–324, 2011. View at Google Scholar
  68. D. I. Nurminsky, M. V. Nurminskaya, E. V. Benevolenskaya, Y. Y. Shevelyov, D. L. Hartl, and V. A. Gvozdev, “Cytoplasmic dynein intermediate-chain isoforms with different targeting properties created by tissue-specific alternative splicing,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6816–6825, 1998. View at Google Scholar · View at Scopus
  69. J. M. Ranz, A. R. Ponce, D. L. Hartl, and D. Nurminsky, “Origin and evolution of a new gene expressed in the Drosophila sperm axoneme,” Genetica, vol. 118, no. 2-3, pp. 233–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Ponce and D. L. Hartl, “The evolution of the novel Sdic gene cluster in Drosophila melanogaster,” Gene, vol. 376, no. 2, pp. 174–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Ponce, “The recent origin of the Sdic gene cluster in the melanogaster subgroup,” Genetica, vol. 135, no. 3, pp. 415–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. B. R. Graveley, A. N. Brooks, J. W. Carlson et al., “The developmental transcriptome of Drosophila melanogaster,” Nature, vol. 471, no. 7339, pp. 473–479, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Long and C. H. Langley, “Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila,” Science, vol. 259, no. 5104, pp. 91–95, 1993. View at Google Scholar · View at Scopus
  74. D. Nurminsky, D. De Aguiar, C. D. Bustamante, and D. L. Hartl, “Chromosomal effects of rapid gene evolution in drosophila melanogaster,” Science, vol. 291, no. 5501, pp. 128–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Touchon, C. Hoede, O. Tenaillon et al., “Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths,” PLoS Genetics, vol. 5, no. 1, article e1000344, 2009. View at Publisher · View at Google Scholar · View at Scopus