Table of Contents
International Journal of Evolutionary Biology
Volume 2013, Article ID 571939, 9 pages
http://dx.doi.org/10.1155/2013/571939
Review Article

Infectious Disease, Endangerment, and Extinction

1Vertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
2Leibniz-Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 30, 10315 Berlin, Germany

Received 20 November 2012; Accepted 4 January 2013

Academic Editor: Stephane Boissinot

Copyright © 2013 Ross D. E. MacPhee and Alex D. Greenwood. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. de Castro and B. Bolker, “Mechanisms of disease-induced extinction,” Ecology Letters, vol. 8, no. 1, pp. 117–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Lyons, F. A. Smith, P. J. Wagner, E. P. White, and J. H. Brown, “Was a ‘hyperdisease’ responsible for the late Pleistocene megafaunal extinction?” Ecology Letters, vol. 7, no. 9, pp. 859–868, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. B. Pedersen, K. E. Jones, C. L. Nunn, and S. Altizer, “Infectious diseases and extinction risk in wild mammals,” Conservation Biology, vol. 21, no. 5, pp. 1269–1279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. F. Smith, D. F. Sax, and K. D. Lafferty, “Evidence for the role of infectious disease in species extinction and endangerment,” Conservation Biology, vol. 20, no. 5, pp. 1349–1357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. “IUCN Redlist of Threatened Species,” 2012, http://www.iucnredlist.org/.
  6. N. S. B. Sodhi, N. S. B. B. W, and C. A. J. Bradshaw, Causes and Consequences of Species Extinctions, Princeton University Press, Princeton, NJ, USA, 2009.
  7. A. M. Q. King, E. Lefkowitz, M. J. Adams, and E. B. Carstens, Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, Academic Press/Elsevier, New York, NY, USA, 2012.
  8. J. F. Drexler, V. M. Corman, M. A. Müller et al., “Bats host major mammalian paramyxoviruses,” Nature Communications, vol. 3, p. 796, 2012. View at Publisher · View at Google Scholar
  9. Z. Wu, X. Ren, L. Yang et al., “Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces,” Journal of Virology, vol. 86, no. 20, pp. 10999–11012, 2012. View at Google Scholar
  10. K. B. Wyatt, P. F. Campos, M. T. P. Gilbert et al., “Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease,” PLoS ONE, vol. 3, no. 11, Article ID e3602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. Taubenberger, D. Baltimore, P. C. Doherty et al., “Reconstruction of the 1918 influenza virus: unexpected rewards from the past,” MBio, vol. 3, no. 5, Article ID e00201-12. View at Publisher · View at Google Scholar
  12. I. Barnes and M. G. Thomas, “Evaluating bacterial pathogen DNA preservation in museum osteological collections,” Proceedings of the Royal Society B, vol. 273, no. 1587, pp. 645–653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Willerslev and A. Cooper, “Ancient DNA,” Proceedings of the Royal Society B, vol. 272, no. 1558, pp. 3–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. C. Ávila-Arcos, S. Y. Ho, Y. Ishida et al., “One hundred twenty years of koala retrovirus 6 evolution determined from museum skins,” Molecular Biology and Evolution. In press. View at Publisher · View at Google Scholar
  15. S. Calvignac, J. M. Terme, S. M. Hensley, P. Jalinot, A. D. Greenwood, and C. Hänni, “Ancient DNA identification of early 20th century simian T-cell leukemia virus type 1,” Molecular Biology and Evolution, vol. 25, no. 6, pp. 1093–1098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. V. J. Schuenemann, K. Bos, S. DeWitte et al., “Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 38, pp. E746–E752, 2011. View at Publisher · View at Google Scholar
  17. J. K. Taubenberger, A. H. Reid, A. E. Krafft, K. E. Bijwaard, and T. G. Fanning, “Initial genetic characterization of the 1918 'Spanish' influenza virus,” Science, vol. 275, no. 5307, pp. 1793–1796, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Worobey, M. Gemmel, D. E. Teuwen et al., “Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960,” Nature, vol. 455, no. 7213, pp. 661–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. D. E. MacPhee and P. A. Marx, The 40,000-Year Plague: Humans, Hyperdisease, and First-Contact Extinctions, Smithsonian Institution Press, Washington, DC, USA, 1997.
  20. A. C. Breed, R. K. Plowright, D. T. S. Hayman et al., Disease Management in Endangered Mammals, Springer, Tokyo, Japan, 2009.
  21. P. Daszak, A. A. Cunningham, and A. D. Hyatt, “Emerging infectious diseases of wildlife—threats to biodiversity and human health,” Science, vol. 287, no. 5452, pp. 443–449, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. O. R. Bininda-Emonds, R. Beck, and R. D. E. MacPhee, Rocking Clocks and Clocking Rocks: A Critical Look at Divergence Time Estimation in Mammals, Cambridge University Press, 2012.
  23. IUCN Red List, http://www.iucnredlist.org/.
  24. S. Turvey, Holocene Extinctions, Oxford University Press, 2009.
  25. R. R. Dunn, N. C. Harris, R. K. Colwell, L. P. Koh, and N. S. Sodhi, “The sixth mass coextinction: are most endangered species parasites and mutualists?” Proceedings of the Royal Society B, vol. 276, no. 1670, pp. 3037–3045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. N. W. Lerche, P. A. Marx, K. G. Osborn et al., “Natural history of endemic type D retrovirus infection and acquired immune deficiency syndrome in group-housed rhesus monkeys,” Journal of the National Cancer Institute, vol. 79, no. 4, pp. 847–854, 1987. View at Google Scholar · View at Scopus
  27. M. Guiserix, N. Bahi-Jaber, D. Fouchet, F. Sauvage, and D. Pontier, “The canine distemper epidemic in Serengeti: are lions victims of a new highly virulent canine distemper virus strain, or is pathogen circulation stochasticity to blame?” Journal of the Royal Society Interface, vol. 4, no. 17, pp. 1127–1134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. H. M. Weingartl, C. Embury-Hyatt, C. Nfon, A. Leung, G. Smith, and G. Kobinger, “Transmission of Ebola virus from pigs to non-human primates,” Scientific Reports, vol. 2, p. 811, 2012. View at Publisher · View at Google Scholar
  29. G. R. Scott, Wiildlife Rinderpest, Plenum Press, New York, NY, USA, 1976.
  30. L. A. Freed, R. L. Cann, M. L. Goff, W. A. Kuntz, and G. R. Bodner, “Increase in avian malaria at upper elevation in Hawai‘i,” Condor, vol. 107, no. 4, pp. 753–764, 2005. View at Google Scholar · View at Scopus
  31. A. A. Cunningham and P. Daszak, “Extinction of a species of land snail due to infection with a microsporidian parasite,” Conservation Biology, vol. 12, no. 5, pp. 1139–1141, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. “Synopsis of infectious diseases and parasites of commercially exploited shellfish: steinhausia mytilovum (mussel egg disease),” http://www.pac.dfo-mpo.gc.ca/science/species-especes/shellfish-coquillages/diseases-maladies/pages/medmu-eng.htm.
  33. J. Murray, E. Murray, M. S. Johnson, and B. Clarke, “The extinction of Partula on Moorea,” Pacific Science, vol. 42, no. 3-4, pp. 150–153, 1988. View at Google Scholar · View at Scopus
  34. R. J. Orth, T. J. B. Carruthers, W. C. Dennison et al., “A global crisis for seagrass ecosystems,” BioScience, vol. 56, no. 12, pp. 987–996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. T. Carlton, G. J. Vermeij, D. R. Lindberg, D. A. Carlton, and E. C. Dudley, “The first historical extinction of a marine invertebrate in an ocean basin: the demise of the eelgrass limpet Lottia alveus,” Biological Bulletin, vol. 180, no. 1, pp. 72–80, 1991. View at Google Scholar · View at Scopus
  36. P. Daszak, L. Berger, A. A. Cunningham, A. D. Hyatt, D. Earl Green, and R. Speare, “Emerging infectious diseases and amphibian population declines,” Emerging Infectious Diseases, vol. 5, no. 6, pp. 735–748, 1999. View at Google Scholar · View at Scopus
  37. L. F. Skerratt, L. Berger, R. Speare et al., “Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs,” EcoHealth, vol. 4, no. 2, pp. 125–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. L. M. Schloegel, A. M. Picco, A. M. Kilpatrick, A. J. Davies, A. D. Hyatt, and P. Daszak, “Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana),” Biological Conservation, vol. 142, no. 7, pp. 1420–1426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. L. M. Schloegel, J. M. Hero, L. Berger, R. Speare, K. McDonald, and P. Daszak, “The decline of the sharp-snouted day frog (Taudactylus acutirostris): the first documented case extinction by infection in a free-ranging wildlife species?” EcoHealth, vol. 3, no. 1, pp. 35–40, 2006. View at Publisher · View at Google Scholar
  40. R. E. Warner, “The role of introduced diseases in the extinction of the endemic Hawaiian avifauna,” The Condor, vol. 70, no. 2, pp. 101–120, 1968. View at Google Scholar
  41. E. VanderWerf, “Distribution and potential impacts of avian pox-like lesions in 'Elepaio at Hakalau Forest National Wildlife Refuge,” Studies in Avian Biology, vol. 22, pp. 247–253, 2001. View at Google Scholar
  42. C. van Riper and J. M. Scott, “Limiting factors affecting Hawaiian native birds,” Studies in Avian Biology, vol. 22, pp. 221–233, 2001. View at Google Scholar
  43. M. E. Roelke-Parker, L. Munson, C. Packer et al., “A canine distemper virus epidemic in Serengeti lions (Panthera leo),” Nature, vol. 379, no. 6564, pp. 441–445, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. E. S. Williams, E. T. Thorne, M. J. Appel, and D. W. Belitsky, “Canine distemper in black-footed ferrets (Mustela nigripes) from Wyoming,” Journal of Wildlife Diseases, vol. 24, no. 3, pp. 385–398, 1988. View at Google Scholar · View at Scopus
  45. E. M. Leroy, P. Telfer, B. Kumulungui et al., “A serological survey of ebola virus infection in central African nonhuman primates,” Journal of Infectious Diseases, vol. 190, no. 11, pp. 1895–1899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. A. M. Pearse and K. Swift, “Allograft theory: transmission of devil facial-tumour disease,” Nature, vol. 439, no. 7076, p. 549, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. C. W. Andrews, A Monograph of Christmas Island (Indian Ocean), British Museum (Natural History), London, UK, 1900.
  48. H. E. Durham, “Notes on Nagana and on some Haematozoa observed during my travels,” Parasitology, vol. 1, pp. 227–235, 1908. View at Publisher · View at Google Scholar
  49. R. D. E. MacPhee, Insulae Infortunatae: Establishing the Chronology of Late Quaternary Mammal Extinctions in the West Indies, Springer, Dordrecht, The Netherlands, 2008.
  50. “National Recovery Plan for the Christmas Island Shrew Crocidura attenuata trichura,” Canberra, Australia, http://www.environment.gov.au/biodiversity/threatened/publications/recovery/c-attenuata-trichura/index.html.
  51. T. G. Martin, S. Nally, A. A. Burbidge et al., “Acting fast helps avoid extinction,” Conservation Letters, vol. 5, no. 4, pp. 274–280, 2012. View at Publisher · View at Google Scholar
  52. J. Pickering and C. Norris, “New evidence on the extinction of the endemic murid Rattus macleari from Christmas Island, Indian Ocean,” Australian Mammalogy, vol. 19, pp. 35–41, 1996. View at Google Scholar
  53. R. D. E. MacPhee and C. Flemming, Requiem Aeternum: The Last Five Hundred Years of Mammalian Species Extinctions, Kluwer Academic/Plenum Publishers, New York, NY, USA, 1999.
  54. J. J. Hanger, L. D. Bromham, J. J. Mckee, T. M. O'Brien, and W. F. Robinson, “The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to gibbon ape leukemia virus,” Journal of Virology, vol. 74, no. 9, pp. 4264–4272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. R. E. Tarlinton, J. Meers, and P. R. Young, “Retroviral invasion of the koala genome,” Nature, vol. 442, no. 7098, pp. 79–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Jackson, N. White, P. Giffard, and P. Timms, “Epizootiology of Chlamydia infections in two free-range koala populations,” Veterinary Microbiology, vol. 65, no. 4, pp. 255–264, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Tarlinton, J. Meers, J. Hanger, and P. Young, “Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas,” Journal of General Virology, vol. 86, no. 3, pp. 783–787, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Tsangaras, M. C. Ávila-Arcos, Y. Ishida, K. M. Helgen, A. L. Roca, and A. D. Greenwood, “Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus),” BMC Genetics, vol. 13, 92 pages, 2012. View at Publisher · View at Google Scholar
  59. Foundation WW.
  60. L. Warnecke, J. M. Turner, T. K. Bollinger et al., “Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 18, pp. 6999–7003, 2012. View at Publisher · View at Google Scholar
  61. S. J. Puechmaille, W. F. Frick, T. H. Kunz et al., “White-nose syndrome: is this emerging disease a threat to European bats?” Trends in Ecology and Evolution, vol. 26, no. 11, pp. 570–576, 2011. View at Publisher · View at Google Scholar
  62. S. J. Puechmaille, G. Wibbelt, V. Korn et al., “Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality,” PLoS ONE, vol. 6, no. 4, Article ID e19167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Wibbelt, A. Kurth, D. Hellmann et al., “White-nose syndrome fungus (Geomyces destructans) in bats, Europe,” Emerging Infectious Diseases, vol. 16, no. 8, pp. 1237–1243, 2010. View at Publisher · View at Google Scholar
  64. W. F. Frick, J. F. Pollock, A. C. Hicks et al., “An emerging disease causes regional population collapse of a common North American bat species,” Science, vol. 329, no. 5992, pp. 679–682, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. E. P. Murchison, O. B. Schulz-Trieglaff, Z. Ning et al., “Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer,” Cell, vol. 148, no. 4, pp. 780–791, 2012. View at Publisher · View at Google Scholar
  66. C. E. Hawkins, C. Baars, H. Hesterman et al., “Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii,” Biological Conservation, vol. 131, no. 2, pp. 307–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. H. McCallum, M. Jones, C. Hawkins et al., “Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction,” Ecology, vol. 90, no. 12, pp. 3379–3392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Cho and M. J. Blaser, “The human microbiome: at the interface of health and disease,” Nature Reviews Genetics, vol. 13, no. 4, pp. 260–270, 2012. View at Publisher · View at Google Scholar
  69. J. F. Drexler, A. Seelen, V. M. Corman et al., “Bats worldwide carry hepatitis E virus-related viruses that form a putative novel genus within the family Hepeviridae,” Journal of Virology, vol. 86, no. 17, pp. 9134–9147, 2012. View at Publisher · View at Google Scholar
  70. C. Kohl, R. Lesnik, A. Brinkmann et al., “Isolation and characterization of three mammalian orthoreoviruses from European bats,” PLoS ONE, vol. 7, no. 8, Article ID e43106, 2012. View at Publisher · View at Google Scholar
  71. C. Kohl, M. Z. Vidovszky, K. Muhldorfer et al., “Genome analysis of bat adenovirus 2: indications of interspecies transmission,” Journal of Virology, vol. 86, no. 3, pp. 1888–1892, 2012. View at Publisher · View at Google Scholar
  72. A. Kurth, C. Kohl, A. Brinkmann et al., “Novel paramyxoviruses in free-ranging European bats,” PLoS ONE, vol. 7, no. 6, Article ID e38688, 2012. View at Publisher · View at Google Scholar
  73. M. Rasmussen, X. Guo, Y. Wang et al., “An Aboriginal Australian genome reveals separate human dispersals into Asia,” Science, vol. 333, no. 6052, pp. 94–98, 2011. View at Publisher · View at Google Scholar
  74. T. Maricic, M. Whitten, and S. Pääbo, “Multiplexed DNA sequence capture of mitochondrial genomes using PCR products,” PLoS ONE, vol. 5, no. 11, Article ID e14004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. H. A. Burbano, E. Hodges, R. E. Green et al., “Targeted investigation of the neandertal genome by array-based sequence capture,” Science, vol. 328, no. 5979, pp. 723–725, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M. C. Ávila-Arcos, E. Cappellini, J. A. Romero-Navarro et al., “Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA,” Scientific Reports, vol. 1, p. 74, 2011. View at Publisher · View at Google Scholar
  77. E. Cappellini, L. J. Jensen, D. Szklarczyk et al., “Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins,” Journal of Proteome Research, vol. 11, no. 2, pp. 917–926, 2012. View at Publisher · View at Google Scholar