Table of Contents
International Journal of Evolutionary Biology
Volume 2013 (2013), Article ID 576452, 12 pages
http://dx.doi.org/10.1155/2013/576452
Research Article

Drosophila melanogaster Selection for Survival after Infection with Bacillus cereus Spores: Evolutionary Genetic and Phenotypic Investigations of Respiration and Movement

1Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
2Department of Statistics, University of Nebrasksa-Lincoln, Lincoln, NE 68583, USA
3Department of Biology, Indiana University, Bloomington, IN, USA
4School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Received 29 June 2012; Revised 3 October 2012; Accepted 23 November 2012

Academic Editor: Rob Kulathinal

Copyright © 2013 Junjie Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. R. Townsend and P. Calow, Physiological Ecology: An Evolutionary Approach To Resource Use, Blackwell Scientific Publications, 1981.
  2. I. P. F. Owens and K. Wilson, “Immunocompetence: a neglected life history trait or conspicuous red herring?” Trends in Ecology and Evolution, vol. 14, no. 5, pp. 170–172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. A. J. Zera and L. G. Harshman, “The physiology of life history trade-offs in animals,” Annual Review of Ecology and Systematics, vol. 32, pp. 95–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. T. D. Williams, “Mechanisms underlying the costs of egg production,” BioScience, vol. 55, no. 1, pp. 39–48, 2005. View at Google Scholar · View at Scopus
  5. A. J. Van Noordwijk and G. Dejong, “Acquisition and allocation of resources—their influence on variation in life history tactics,” American Naturalist, vol. 128, pp. 137–142, 1986. View at Google Scholar
  6. D. J. Clancy, D. Gems, L. G. Harshman et al., “Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein,” Science, vol. 292, no. 5514, pp. 104–106, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Tatar, A. Kopelman, D. Epstein, M. P. Tu, C. M. Yin, and R. S. Garofalo, “A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function,” Science, vol. 292, no. 5514, pp. 107–110, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Rolff and M. T. Siva-Jothy, “Copulation corrupts immunity: a mechanism for a cost of mating in insects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9916–9918, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. O. Armitage, J. J. W. Thompson, J. Rolff, and M. T. Siva-Jothy, “Examining costs of induced and constitutive immune investment in Tenebrio molitor,” Journal of Evolutionary Biology, vol. 16, no. 5, pp. 1038–1044, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Jacot, H. Scheuber, and M. W. G. Brinkhof, “Costs of an induced immune response on sexual display and longevity in field crickets,” Evolution, vol. 58, no. 10, pp. 2280–2286, 2004. View at Google Scholar · View at Scopus
  11. M. K. N. Lawniczak, A. I. Barnes, J. R. Linklater, J. M. Boone, S. Wigby, and T. Chapman, “Mating and immunity in invertebrates,” Trends in Ecology and Evolution, vol. 22, no. 1, pp. 48–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. M. Fedorka, M. Zuk, and T. A. Mousseau, “Immune suppression and the cost of reproduction in the ground cricket, Allonemobius socius,” Evolution, vol. 58, no. 11, pp. 2478–2485, 2004. View at Google Scholar · View at Scopus
  13. K. A. McKean and L. Nunney, “Bateman's principle and immunity: phenotypically plastic reproductive strategies predict changes in immunological sex differences,” Evolution, vol. 59, no. 7, pp. 1510–1517, 2005. View at Google Scholar · View at Scopus
  14. E. Svensson, L. Raberg, C. Koch, and D. Hasselquist, “Energetic stress, immunosuppression and the costs of an antibody response,” Functional Ecology, vol. 12, no. 6, pp. 912–919, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. I. P. F. Owens and K. Wilson, “Immunocompetence: a neglected life history trait or conspicuous red herring?” Trends in Ecology and Evolution, vol. 14, no. 5, pp. 170–172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Hillgarth and J. C. Wingfield, “Parasite-mediated sexual selection: endocrine aspects,” in Parasite Mediated Sexual Selection: Endocrine Aspects, D. H. Clayton and J. Moore, Eds., pp. 78–104, Oxford University Press, Oxford, UK, 1997. View at Google Scholar
  17. Y. Moret and P. Schmid-Hempel, “Survival for immunity: the price of immune system activation for bumblebee workers,” Science, vol. 290, no. 5494, pp. 1166–1168, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Djawdan, M. R. Rose, and T. J. Bradley, “Does selection for stress resistance lower metabolic rate?” Ecology, vol. 78, no. 3, pp. 828–837, 1997. View at Google Scholar · View at Scopus
  19. J. Ma, A. K. Benson, S. D. Kachman, Z. Hu, and L. G. Harshman, “Drosophila melanogaster selection for survival of Bacillus cereus infection: life history trait indirect responses,” The International Journal of Evolution, vol. 2012, Article ID 935970, 2012. View at Publisher · View at Google Scholar
  20. K. A. McKean and B. P. Lazzaro, “The costs of immunity and the evolution of of immunological defense mechanisms,” in Mechanisms of Life History Evolution, T. Flatt and A. Heyland, Eds., Oxford University Press, 2011. View at Google Scholar
  21. W. L. Nicholson and P. Setlow, “Sporulation, germination and outgrowth,” in Molecular Biological Methods for Bacillus, C. R. Harwood and S. M. Cutting, Eds., pp. 391–450, John Wiley and Sons, Chichester, UK, 1990. View at Google Scholar
  22. J. R. B. Lighton, Measuring Metabolic Rates, a Manual for Scientists, Oxford University Press, Oxford, UK, 2008.
  23. D. S. Richard, R. Rybczynski, T. G. Wilson et al., “Insulin signaling is necessary for vitellogenesis in Drosophila melanogaster independent of the roles of juvenile hormone and ecdysteroids: female sterility of the chico1 insulin signaling mutation is autonomous to the ovary,” Journal of Insect Physiology, vol. 51, no. 4, pp. 455–464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zhang, D. Sturgill, M. Parisi, S. Kumar, and B. Oliver, “Constraint and turnover in sex-biased gene expression in the genus Drosophila,” Nature, vol. 450, no. 7167, pp. 233–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. L. G. Harshman and J. L. Schmid, “Evolution of starvation resistance in Drosophila melanogaster: aspects of metabolism and counter-impact selection,” Evolution, vol. 52, no. 6, pp. 1679–1685, 1998. View at Google Scholar · View at Scopus
  26. F. A. Lints and C. V. Lints, “Respiration in drosophila. II. Respiration in relation to age by wild, inbred and hybrid drosophila melanogaster imagos,” Experimental Gerontology, vol. 3, no. 4, pp. 341–349, 1968. View at Google Scholar · View at Scopus
  27. A. A. Khazaeli, W. Van Voorhies, and J. W. Curtsinger, “Longevity and metabolism in Drosophila melanogaster: genetic correlations between life span and age-specific metabolic rate in populations artificially selected for long life,” Genetics, vol. 169, no. 1, pp. 231–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. E. Schwasinger, S. D. Kachman, and L. G. Harshman, “Evolution of starvation resistance in Drosophila melanogaster: measurement of direct and correlated responses to artificial selection,” Journal of Evolutionary Biology, vol. 25, pp. 378–387, 2012. View at Google Scholar