Table of Contents
International Journal of Evolutionary Biology
Volume 2014 (2014), Article ID 382453, 10 pages
http://dx.doi.org/10.1155/2014/382453
Research Article

Diversification in Monkeyflowers: An Investigation of the Effects of Elevation and Floral Color in the Genus Mimulus

Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4

Received 14 August 2013; Revised 16 November 2013; Accepted 20 November 2013; Published 5 January 2014

Academic Editor: Hirohisa Kishino

Copyright © 2014 Ezgi Ogutcen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Igic, R. Lande, and J. R. Kohn, “Loss of self-incompatibility and its evolutionary consequences,” International Journal of Plant Sciences, vol. 169, no. 1, pp. 93–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. D. Sargent, “Floral symmetry affects speciation rates in angiosperms,” Proceedings of the Royal Society B, vol. 271, no. 1539, pp. 603–608, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. E. Ricklefs, “History and diversity: explorations at the intersection of ecology and evolution,” American Naturalist, vol. 170, pp. S56–S70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. L. Rabosky, “Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions,” Ecology Letters, vol. 12, no. 8, pp. 735–743, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Vamosi and S. M. Vamosi, “Key innovations within a geographical context in flowering plants: towards resolving Darwin's abominable mystery,” Ecology Letters, vol. 13, no. 10, pp. 1270–1279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Vamosi and J. C. Vamosi, “Causes and consequences of range size variation: the influence of traits, speciation, and extinction,” Frontiers of Biogeography, vol. 4, no. 4, 2012. View at Google Scholar
  7. I. P. F. Owens, P. M. Bennett, and P. H. Harvey, “Species richness among birds: body size, life history, sexual selection or ecology?” Proceedings of the Royal Society B, vol. 266, no. 1422, pp. 933–939, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Böhning-Gaese, T. Caprano, K. van Ewijk, and M. Veith, “Range size: disentangling current traits and phylogenetic and biogeographic factors,” American Naturalist, vol. 167, no. 4, pp. 555–567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. B. Losos and D. Schluter, “Analysis of an evolutionary species-area relationship,” Nature, vol. 408, no. 6814, pp. 847–850, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Hughes and R. Eastwood, “Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 27, pp. 10334–10339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. W. S. Armbruster, “Can indirect selection and genetic context contribute to trait diversification? A transition-probability study of blossom-colour evolution in two genera,” Journal of Evolutionary Biology, vol. 15, no. 3, pp. 468–486, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. E. J. Arnold, V. Savolainen, and L. Chittka, “Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators,” Arthropod-Plant Interactions, vol. 3, no. 1, pp. 27–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. van der Pijl, “Reproductive integration and sexual disharmony in floral functions,” in The Pollination of Flowers By Insects, A. J. Richards, Ed., pp. 79–88, Academic Press, London, UK, 1978. View at Google Scholar
  14. J. Ollerton, R. Alarcón, N. M. Waser et al., “A global test of the pollination syndrome hypothesis,” Annals of Botany, vol. 103, no. 9, pp. 1471–1480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. W. Cruden, “Pollinators in high-elevation ecosystems: relative effectiveness of birds and bees,” Science, vol. 176, no. 4042, pp. 1439–1440, 1972. View at Google Scholar · View at Scopus
  16. M. D. Rausher, “Evolutionary transitions in floral color,” International Journal of Plant Sciences, vol. 169, no. 1, pp. 7–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. L. Grossenbacher and J. B. Whittall, “Increased floral divergence in sympatric monkeyflowers,” Evolution, vol. 65, no. 9, pp. 2712–2718, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. M. Beardsley, S. E. Schoenig, J. B. Whittall, and R. G. Olmstead, “Patterns of evolution in western North American Mimulus (Phrymaceae),” American Journal of Botany, vol. 91, no. 3, pp. 474–489, 2004. View at Google Scholar · View at Scopus
  19. J. B. Whittall, M. L. Carlson, P. M. Beardsley, R. J. Meinke, and A. Liston, “The Mimulus moschatus alliance (Phrymaceae): molecular and morphological phylogenetics and their conservation implications,” Systematic Botany, vol. 31, no. 2, pp. 380–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. M. Beardsley and R. G. Olmstead, “Redefining phrymaceae: the placement of Mimulus, tribe mimuleae, and Phryma,” American Journal of Botany, vol. 89, no. 7, pp. 1093–1102, 2002. View at Google Scholar · View at Scopus
  21. California Native Plant Society (CNPS), “Inventory of Rare and Endangered Plants,” California Native Plant Society, Sacramento, Calif, USA, June 2013.
  22. Calflora, “Information on California plants for education, research and conservation,” The Calflora Database, Berkeley, Calif, USA, 2014.
  23. EOL, “Encyclopedia of Life,” 2013, http://eol.org/.
  24. J. F. Project, Ed., Jepson, June 2013, http://ucjeps.berkeley.edu/IJM.html.
  25. FloraBase and Western Australian Herbarium (1998–2013), “FloraBase—the Western Australian Flora,” Department of Parks and Wildlife, 2013, http://florabase.dpaw.wa.gov.au/.
  26. USDA, NRCS, The PLANTS Database, National Plant Data Team, Greensboro, NC, USA, 27401-4901 USA, 2010, http://plants.usda.gov/java/.
  27. R. G. Olmstead, C. W. Depamphilis, A. D. Wolfe, N. D. Young, W. J. Elisons, and P. A. Reeves, “Disintegration of the scrophulariaceae,” American Journal of Botany, vol. 88, no. 2, pp. 348–361, 2001. View at Google Scholar · View at Scopus
  28. W. P. Maddison and D. R. Maddison, “Mesquite: a modular system for evolutionary analysis,” Version 2.75, 2011, http://mesquiteproject.org/mesquite/mesquite.html.
  29. T. J. Wheeler and J. D. Kececioglu, “Multiple alignment by aligning alignments,” Bioinformatics, vol. 23, no. 13, pp. i559–i568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models,” Bioinformatics, vol. 22, no. 21, pp. 2688–2690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. J. Drummond and A. Rambaut, “BEAST: bayesian evolutionary analysis by sampling trees,” BMC Evolutionary Biology, vol. 7, no. 1, article 214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. J. Drummond, M. A. Suchard, D. Xie, and A. Rambaut, “Bayesian phylogenetics with BEAUti and the BEAST 1.7,” Molecular Biology and Evolution, vol. 29, pp. 1969–1973, 2012. View at Google Scholar
  33. M. Hasegawa, H. Kishino, and T. Yano, “Dating of the human-ape splitting by a molecular clock of mitochondrial DNA,” Journal of Molecular Evolution, vol. 22, no. 2, pp. 160–174, 1985. View at Google Scholar · View at Scopus
  34. K. Bremer, E. M. Friis, and B. Bremer, “Molecular phylogenetic dating of asterid flowering plants shows early cretaceous diversification,” Systematic Biology, vol. 53, no. 3, pp. 496–505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Gernhard, “The conditioned reconstructed process,” Journal of Theoretical Biology, vol. 253, no. 4, pp. 769–778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. G. U. Yule, “A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis,” Philosophical Transactions of the Royal Society B, vol. 213, pp. 21–87, 1925. View at Google Scholar
  37. W. P. Maddison, P. E. Midford, and S. P. Otto, “Estimating a binary character's effect on speciation and extinction,” Systematic Biology, vol. 56, no. 5, pp. 701–710, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. G. Fitzjohn, “Diversitree: comparative phylogenetic tests of diversification,” R package version 0.9–3, 2012.
  39. R Development Core Team, “R: A language and environment for statistical computing,” R Foundation for Statistical Computing, Vienna, Austria, 2008.
  40. Y. Yu, A. J. Harris, and X. J. He, “S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories,” Molecular Phylogenetics and Evolution, vol. 56, no. 2, pp. 848–850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Ronquist, “Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography,” Systematic Biology, vol. 46, no. 1, pp. 195–203, 1997. View at Google Scholar · View at Scopus
  42. F. Ronquist, “Bayesian inference of character evolution,” Trends in Ecology and Evolution, vol. 19, no. 9, pp. 475–481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. R. H. Ree and S. A. Smith, “Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis,” Systematic Biology, vol. 57, no. 1, pp. 4–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. P. M. Beardsley, A. Yen, and R. G. Olmstead, “AFLP phylogeny of Mimulus section Erythranthe and the evolution of hummingbird pollination,” Evolution, vol. 57, no. 6, pp. 1397–1410, 2003. View at Google Scholar · View at Scopus
  45. R. Bleiweiss, “Origin of hummingbird faunas,” Biological Journal of the Linnean Society, vol. 65, no. 1, pp. 77–97, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. S. D. Schoville, G. K. Roderick, and D. H. Kavanaugh, “Testing the “Pleistocene species pump” in alpine habitats: lineage diversification of flightless ground beetles (Coleoptera: Carabidae: Nebria) in relation to altitudinal zonation,” Biological Journal of the Linnean Society, vol. 107, pp. 95–111, 2012. View at Google Scholar
  47. R. E. Sedano and K. J. Burns, “Are the Northern Andes a species pump for Neotropical birds? Phylogenetics and biogeography of a clade of Neotropical tanagers (Aves: Thraupini),” Journal of Biogeography, vol. 37, no. 2, pp. 325–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. M. Biernaskie and E. Elle, “A theory for exaggerated secondary sexual traits in animal-pollinated plants,” Evolutionary Ecology, vol. 21, no. 4, pp. 459–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. E. C. Engel and R. E. Irwin, “Linking pollinator visitation rate and pollen receipt,” American Journal of Botany, vol. 90, no. 11, pp. 1612–1618, 2003. View at Google Scholar · View at Scopus
  50. M. Bosch and N. M. Waser, “Effects of local density on pollination and reproduction in Delphinium nuttallianum and Aconitum columbianum (Ranunculaceae),” American Journal of Botany, vol. 86, no. 6, pp. 871–879, 1999. View at Google Scholar · View at Scopus
  51. M. A. Rodríguez-Gironés and L. Santamaría, “Why are so many bird flowers red?” PLoS Biology, vol. 2, no. 10, article e350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. R. K. Vickery, “Speciation in Mimulus, or, can a simple flower color mutant lead to species divergence?” Great Basin Naturalist, vol. 55, no. 2, pp. 177–180, 1995. View at Google Scholar · View at Scopus
  53. S. Y. Strauss, R. E. Irwin, and V. M. Lambrix, “Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish,” Journal of Ecology, vol. 92, no. 1, pp. 132–141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. D. Smith, R. E. Miller, S. P. Otto, R. G. FitzJohn, and M. D. Rausher, “The effects of flower color transitions on diversification rates in morning glories (Ipomoea subg. Quamoclit, Convolvulaceae),” in Darwin's Heritage Today, M. Long, H. Gu, Z. Zhou, and editors, Eds., pp. 202–226, Higher Education Press, Beijing, China, 2010. View at Google Scholar
  55. S. D. Smith, “Using phylogenetics to detect pollinator-mediated floral evolution,” New Phytologist, vol. 188, no. 2, pp. 354–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. D. L. Rabosky, “Ecological limits on clade diversification in higher taxa,” American Naturalist, vol. 173, no. 5, pp. 662–674, 2009. View at Publisher · View at Google Scholar · View at Scopus