Table of Contents Author Guidelines Submit a Manuscript
International Journal of Ecology
Volume 2012, Article ID 947103, 12 pages
Research Article

Trait-Environment Relationships and Tiered Forward Model Selection in Linear Mixed Models

1Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC Wageningen, The Netherlands
2Ecosystem Management Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1c, 2610 Antwerpen, Belgium

Received 23 December 2011; Revised 1 April 2012; Accepted 2 April 2012

Academic Editor: Jean Clobert

Copyright © 2012 Tahira Jamil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


To understand patterns of variation in species biomass in terms of species traits and environmental variables a one-to-one approach might not be sufficient, and a multitrait multienvironment approach will be necessary. A multitrait multienvironment approach is proposed, based on a mixed model for species biomass. In the model, environmental variables are species-dependent random terms, whereas traits are fixed terms, and trait-environment relationships are fixed interaction terms. In this approach, identifying the important trait-environment relationship becomes a model selection problem. Because of the mix of fixed and random terms, we propose a novel tiered forward selection approach for this. In the first tier, the random factors are selected; in the second, the fixed effects; in the final tier, nonsignificant terms are removed using a modified Akaike information criterion. We complement this tiered selection with an alternative selection method, namely, type II maximum likelihood. A mesocosm experiment on early community assembly in wetlands with three two-level environmental factors is analyzed by the new approach. The results are compared with the fourth corner problem and the linear trait-environment method. Traits related to germination and seedling establishment are selected as being most important in the community assembly in these wetland mesocosms.