Review Article

Design and Development of Biosensors for the Detection of Heavy Metal Toxicity

Table 7

Examples of recombinant bacteria for specific heavy metal detection.

Biorecognition elementMetal ion/detection limitLinear rangeDetection methodReferences
Promoter/reporter geneHost microorganism
(1)(2)(3)(4)(6) (7)

Bacteria

Ars pR773/lacZEscherichia coliAs3+/50  πœ‡ M; Sb3+/1 fM πœ‡ M-mM; fM- πœ‡ MChemiluminescence[73]
CUP 1/lacZSaccharomyces cerevisiaeCu2+16.0 –32.0 mg/LAmperometry/ βˆ’0.6 V versus Ag/AgCl[80]
pMOL 90 + Tn4431/luxCDABEAlcaligenes eutrophus (AE1239)Cu2+/1  πœ‡ M0–250  πœ‡ MBioluminescence[81]
cadA and cad C/lucFFStaphylococcus aureus (RN4220)Cd2+/10 nM;
Pb2+/33 nM; Sb2+/1 nM
10 nM1 πœ‡ M
33 nM– 330  πœ‡ M
1 nM–330 nM
Bioluminescence[82]
mer /luxEscherichia coli (CM 2624)Hg2+Bioluminescence[83]
merR/luxFFEscherichia coli (S30)Hg2+Luminescence[84]
merR/luxFFEscherichia coli (MC 1061)Hg2+Luminescence[85]
βˆ’/DsRed-GFPEscherichia coli (DH5Ξ±)Cu2+/45 nMFluorescence[86]
βˆ’/luxBurkholderia sp (RASC c2)Zn2+/1.7  πœ‡ g/mL
Cu2+/0.09  πœ‡ g/mL
Bioluminescence[70]
cad/rs-GFP Escherichia coli (DH5Ξ±)Cd2+/0.1 nmol/L; Pb2+/10 nmol/L; Sb3+/0.1 nmol/LFluorescence[87]
βˆ’/eGFP205CEscherichia coli (K12), Caenorhabditis elegans Hg2+Fluorescence[88]
copA/luxEscherichia coli (W3110)Cu2+, Ag+, Au3+Bioluminescence[89]

Algae

Tetraselmis chuii (Prasinophyceae)/CPECu2+/4.6 10βˆ’10 M5 10βˆ’8–10βˆ’6 MAmperometry/ βˆ’0.4 V versus Ag/AgCl[90]
Chlorella vulgarisCd2+Synchronous-scan Spectrofluorimetry[91]
AlkP from Chlorella vulgaris/PtCd2+, Zn2+/10 ppbConductometry[75]
Phormidium sp./CPEPb2+/2.5 10βˆ’8 M5 10βˆ’8– 2 10βˆ’5 MCV, DPSV[92]

Yeast cell

Rhodotorula mucilaginosa/CPECu2+10βˆ’7–10βˆ’5 MCV, DPSV[93]

Fungi

Rhizopus arrhizus/CPEPb2+/0.5 10βˆ’8 M10βˆ’7– 1.25 10βˆ’5 MCV, DPSV[94]

Metal-binding protein

Synthetic phytochelatin (EC)/AuHg2+, Cd2+, Pb2+, Cu2+1 fM–10 mMcapacitance[68]
GST-SmtA/AuHg2+capacitance[83]
GST-SmtA/AuHg2+, Cd2+, Cu2+, Zn2+/ 10βˆ’15 Mcapacitance[6, 95]
MerR/AuHg2+, Cd2+, Cu2+, Zn2+/10βˆ’15 Mcapacitance[6, 95]
Cytocrom c3 from Desulfomicrobium norvegicum/GCECr6+/0.2 mg/LAmperometry/βˆ’0,53 V versus SCE[96]
Escherichia coli (NCIMB 8277)/SPEHg2+/1 ppmConductometry[78]
Acidithiobacillus ferrooxidans/O2 Clark electrodeCr3+2 10βˆ’5–40 10βˆ’5 MAmperometry/β€”[97]
Circinella sp./CPECu2+/5.4 10βˆ’8 M(0.0034 mg/L)5 10βˆ’7 – 1 10βˆ’5 M Cu2+(0.032–0.635 mg/L)DPSV[65]
CUP1 gene from Saccharomyces Cu2+16–32 mg/LAmperometry/βˆ’0.6 V versus Ag/AgCl   [80]
Cerevisiaeβ€”fused to lacZ gene from
Escherichia coli/O2 Clark electrode
Escherichia coli
(K-12)-(PAH-PSS)3β€”ITO
Hg2+/10βˆ’12 M10βˆ’12–10βˆ’3 MElectrochemical impedance spectroscopy[98]
Bacillus sphaericus
MTCC 5100/ NH4+-ISE
Ni2+/100 ppm or 0.044 ppm in food0.03–0.68 nMPotentiometry[99]

CPE = carbon paste electrode; CV = cyclic voltammetry, DPSV = differential pulse stripping voltammetry, GCE = glassy carbon electrode; ISE = ion selective electrode; ITO = indium-tin-oxide glass electode; lucFF = firefly luciferase; PAH = poly(allylamine hydrochlorure); PSS = poly(styrene sulfonate); rs-GFP = red-shifted green fluorescent protein; SCE = saturated calomel electrode, SPE = screen-printing electrode.