Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2013, Article ID 128248, 7 pages
http://dx.doi.org/10.1155/2013/128248
Review Article

Anodic Materials for Electrocatalytic Ozone Generation

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received 19 March 2013; Accepted 19 May 2013

Academic Editor: Shen-Ming Chen

Copyright © 2013 Yun-Hai Wang and Qing-Yun Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Beltrán, Ozone Reaction Kinetics for Water and Waste Water Systems, Lewis Publishers, Boca Raton, Fla, USa, 2004.
  2. N. P. Cheremisinoff, Handbook of Water and wasteWater Treatment Technologies, Butterworth-Heinemann, Woburn, Mass, USA, 2002.
  3. S. Han, J. D. Kim, K. C. Singh, and R. S. Chaudhary, “Electrochemical generation of ozone using solid polymer electrolyte—state of the art,” Indian Journal of Chemistry Section A, vol. 43, no. 8, pp. 1599–1614, 2004. View at Google Scholar · View at Scopus
  4. L. M. Da Silva, M. H. P. Santana, and J. F. C. Boodts, “Electrochemistry and green chemical processes: electrochemical ozone production,” Quimica Nova, vol. 26, no. 6, pp. 880–888, 2003. View at Google Scholar · View at Scopus
  5. S. Stucki, H. Baumann, H. J. Christen, and R. Kötz, “Performance of a pressurized electrochemical ozone generator,” Journal of Applied Electrochemistry, vol. 17, no. 4, pp. 773–778, 1987. View at Publisher · View at Google Scholar · View at Scopus
  6. P. C. Foller and C. W. Tobias, “The anodic evolution of ozone,” Journal of the Electrochemical Society, vol. 129, no. 3, pp. 506–515, 1982. View at Google Scholar · View at Scopus
  7. P. C. Foller and M. L. Goodwin, “Electrochemical generation of high-concentration ozone for waste treatment,” Chemical Engineering Progress, vol. 81, no. 3, pp. 49–51, 1985. View at Google Scholar · View at Scopus
  8. L. M. Da Silva, L. A. De Faria, and J. F. C. Boodts, “Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency,” Electrochimica Acta, vol. 48, no. 6, pp. 699–700, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. Miles, E. A. Klaus, B. P. Gunn, J. R. Locker, W. E. Serafin, and S. Srinivasan, “The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80C in acid solutions,” Electrochimica Acta, vol. 23, no. 6, pp. 521–526, 1978. View at Google Scholar · View at Scopus
  10. J. D. Seader and C. W. Tobias, “Ozone by electrolysis of sulfuric acid,” Industrial & Engineering Chemistry, vol. 44, pp. 2207–2211, 1952. View at Google Scholar
  11. P. C. Foller and C. W. Tobias, “The effect of electrolyte anion adsorption on current efficiencies for the evolution of ozone,” Journal of Physical Chemistry, vol. 85, no. 22, pp. 3238–3244, 1981. View at Google Scholar · View at Scopus
  12. P. C. Foller and C. W. Tobias, “The mechanism of the disintegration of lead dioxide anodes under conditions of ozone evolution in strong acid electrolytes,” Journal of the Electrochemical Society, vol. 129, pp. 567–570, 1982. View at Google Scholar
  13. S. Stucki, G. Theis, R. Koetz, H. Devantay, and H. J. Christen, “In situ production of ozone in water using a membrel electrolyzer,” Journal of the Electrochemical Society, vol. 132, no. 2, pp. 367–371, 1985. View at Google Scholar · View at Scopus
  14. K. Onda, T. Ohba, H. Kusunoki, S. Takezawa, D. Sunakawa, and T. Araki, “Improving characteristics of ozone water production with multilayer electrodes and operating conditions in a polymer electrolyte water electrolysis cell,” Journal of the Electrochemical Society, vol. 152, no. 10, pp. D177–D183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Katoh, Y. Nishiki, and S. Nakamatsu, “Polymer electrolyte-type electrochemical ozone generator with an oxygen cathode,” Journal of Applied Electrochemistry, vol. 24, no. 6, pp. 489–494, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Tatapudi and J. M. Fenton, “Synthesis of ozone in a proton exchange membrane electrochemical reactor,” Journal of the Electrochemical Society, vol. 140, no. 12, pp. 3527–3530, 1993. View at Google Scholar · View at Scopus
  17. P. Tatapudi and J. M. Fenton, “Simultaneous synthesis of ozone and hydrogen peroxide in a proton-exchange-membrane electrochemical reactor,” Journal of the Electrochemical Society, vol. 141, no. 5, pp. 1174–1178, 1994. View at Google Scholar · View at Scopus
  18. V. A. Shepelin, A. A. Babak, G. F. Potapova, E. V. Kasatkin, and Y. E. Roginskaya, “New lead dioxide anode design for ozone electrosynthesis,” Soviet Electrochemistry, vol. 26, pp. 1021–1027, 1990. View at Google Scholar
  19. J. E. Graves, D. Pletcher, R. L. Clarke, and F. C. Walsh, “The electrochemistry of Magnéli phase titanium oxide ceramic electrodes part II: ozone generation at Ebonex and Ebonex/lead dioxide anodes,” Journal of Applied Electrochemistry, vol. 22, no. 3, pp. 200–203, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Wen and C. Chang, “Structural changes of PbO2 anodes during ozone evolution,” Journal of the Electrochemical Society, vol. 140, no. 10, pp. 2764–2770, 1993. View at Google Scholar · View at Scopus
  21. A. A. Babak, V. N. Fateev, R. Amadelli, and G. F. Potapova, “Ozone electrosynthesis in an electrolyzer with solid polymer electrolyte,” Russian Journal of Electrochemistry, vol. 30, pp. 739–741, 1994. View at Google Scholar
  22. A. A. Babak, R. Amadelli, A. De Battisti, and V. N. Fateev, “Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media,” Electrochimica Acta, vol. 39, no. 11-12, pp. 1597–1602, 1994. View at Google Scholar · View at Scopus
  23. A. B. Velichenko, D. V. Girenko, S. V. Kovalyov, A. N. Gnatenko, R. Amadelli, and F. I. Danilov, “Lead dioxide electrodeposition and its application: influence of fluoride and iron ions,” Journal of Electroanalytical Chemistry, vol. 454, no. 1-2, pp. 203–208, 1998. View at Google Scholar · View at Scopus
  24. R. Amadelli, L. Armelao, A. B. Velichenko et al., “Oxygen and ozone evolution at fluoride modified lead dioxide electrodes,” Electrochimica Acta, vol. 45, no. 4-5, pp. 713–720, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. A. B. Velichenko, D. V. Girenko, N. V. Nikolenko, R. Amadelli, E. A. Baranova, and F. I. Danilov, “Oxygen evolution on lead dioxide modified with fluorine and iron,” Russian Journal of Electrochemistry, vol. 36, no. 11, pp. 1216–1220, 2000. View at Google Scholar · View at Scopus
  26. A. B. Velichenko, R. Amadelli, G. L. Zucchini, D. V. Girenko, and F. I. Danilov, “Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts,” Electrochimica Acta, vol. 45, no. 25-26, pp. 4341–4350, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Amadelli, A. De Battisti, D. V. Girenko, S. V. Kovalyov, and A. B. Velichenko, “Electrochemical oxidation of trans-3,4-dihydroxycinnamic acid at PbO2 electrodes: direct electrolysis and ozone mediated reactions compared,” Electrochimica Acta, vol. 46, no. 2-3, pp. 341–347, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Amadelli and A. B. Velichenko, “Lead dioxide electrodes for high potential anodic processes,” Journal of the Serbian Chemical Society, vol. 66, no. 11-12, pp. 834–845, 2001. View at Google Scholar · View at Scopus
  29. A. B. Velichenko, R. Amadelli, E. A. Baranova, D. V. Girenko, and F. I. Danilov, “Electrodeposition of Co-doped lead dioxide and its physicochemical properties,” Journal of Electroanalytical Chemistry, vol. 527, no. 1-2, pp. 56–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. B. Velichenko, R. Amadelli, A. Benedetti, D. V. Girenko, S. V. Kovalyov, and F. I. Danilov, “Electrosynthesis and physicochemical properties of PbO2 films,” Journal of the Electrochemical Society, vol. 149, no. 9, pp. C445–C449, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Amadelli, A. Maldotti, A. Molinari, F. I. Danilov, and A. B. Velichenko, “Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media,” Journal of Electroanalytical Chemistry, vol. 534, no. 1, pp. 1–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Feng, D. C. Johnson, S. N. Lowery, and J. J. Carey, “Electrocatalysis of anodic oxygen-transfer reactions evolution of ozone,” Journal of the Electrochemical Society, vol. 141, no. 10, pp. 2708–2711, 1994. View at Google Scholar · View at Scopus
  33. J. Wang and X. Jing, “Study on the effect of the lead dioxide particles on the anodic electrode performance for ozone generation,” Electrochemistry, vol. 74, no. 7, pp. 539–543, 2006. View at Google Scholar · View at Scopus
  34. Y. Zhou, B. Wu, R. Gao, H. Zhang, and W. Jiang, “Performance of PbO2 anode catalysts on solid polymer electrolyte membrance electrode composite in electrolytic ozone generators,” Chinese Journal of Applied Chemistry, vol. 13, pp. 95–97, 1996. View at Google Scholar
  35. J. C. G. Thanos and D. W. Wabner, “Structural changes of the texture of β-lead dioxide-titanium anodes during the oxygen/ozone electrosynthesis in neutral and acid electrolytes,” Journal of Electroanalytical Chemistry, vol. 182, no. 1, pp. 37–49, 1985. View at Google Scholar · View at Scopus
  36. J. C. Thanos and D. W. Wabner, “Electrochemical-separation of oxygen and ozone on lead dioxide and platinium anodes in aqueos-electroltes with O-18 marked water,” Electrochimica Acta, vol. 30, pp. 753–756, 1985. View at Google Scholar
  37. D. Wabner and C. Grambow, “Reactive intermediates during oxindation of water lead dioxide and platinum electrodes,” Journal of Electroanalytical Chemistry, vol. 195, no. 1, pp. 95–108, 1985. View at Google Scholar · View at Scopus
  38. L. M. Da Silva, L. A. De Faria, and J. F. C. Boodts, “Green processes for environmental application. Electrochemical ozone production,” Pure and Applied Chemistry, vol. 73, no. 12, pp. 1871–1884, 2001. View at Google Scholar · View at Scopus
  39. A. A. Chernik, V. B. Drozdovich, and I. M. Zharskii, “Ozone evolution at the lead dioxide electrode in highly acid and neutral electrolytes: the influence of polarization and fluoride ions on the process kinetics,” Russian Journal of Electrochemistry, vol. 33, no. 3, pp. 259–263, 1997. View at Google Scholar · View at Scopus
  40. A. A. Chernik, V. B. Drozdovich, and I. M. Zharskii, “Ozone evolution at the lead dioxide electrode in sulfuric and perchloric acid solutions,” Russian Journal of Electrochemistry, vol. 33, no. 3, pp. 264–267, 1997. View at Google Scholar · View at Scopus
  41. A. A. Chernik and I. M. Zharskii, “Ozone generation on the lead dioxide electrodes in a sulfuric acid solution at potentials of 2 to 3 V,” Russian Journal of Electrochemistry, vol. 36, no. 4, pp. 387–391, 2000. View at Google Scholar · View at Scopus
  42. K. Ota, H. Kaida, and N. Kamiya, “Electrolytic ozone generation in sulfuric acid solution,” Denki Kagaku, vol. 54, pp. 890–895, 1986. View at Google Scholar
  43. K. Ota, H. Kaida, and N. Kamiya, “Electrolytic ozone generation in perchloric acid solution,” Denki Kagaku, vol. 55, pp. 465–468, 1987. View at Google Scholar
  44. K. Ota, H. Kaida, and N. Kamiya, “Electrolytic ozone generation in phosphoric acid solution,” Denki Kagaku, vol. 56, pp. 206–207, 1988. View at Google Scholar
  45. K. Ota, H. Kaida, and N. Kamiya, “Electrolytic ozone generation in aqueous phosphate solution,” Denki Kagaku, vol. 56, pp. 741–744, 1988. View at Google Scholar
  46. S. Cheng and K. Chan, “Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode,” Electrochemical and Solid-State Letters, vol. 7, no. 3, pp. D4–D6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Wang, S. Cheng, K. Chan, and X. Y. Li, “Electrolytic generation of ozone on antimony—and nickel-doped tin oxide electrode,” Journal of the Electrochemical Society, vol. 152, no. 11, pp. D197–D200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. P. A. Christensen, W. F. Lin, H. Christensen et al., “Room temperature, electrochemical generation of ozone with 50% current efficiency in 0.5m sulfuric acid at cell voltages < 3V,” Ozone: Science & Engineering, vol. 31, no. 4, pp. 287–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Basiriparsa and M. Abbasi, “High-efficiency ozone generation via electrochemical oxidation of water using Ti anode coated with Ni-Sb-SnO2,” Journal of Solid State Electrochemistry, vol. 16, no. 3, pp. 1011–1018, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Shekarchizade and M. K. Amini, “Effect of elemental composition on the structure, electrochemical properties, and ozone production activity of Ti/SnO2-Sb-Ni electrodes prepared by thermal pyrolysis method,” International Journal of Electrochemical, vol. 2011, Article ID 240837, 13 pages, 2011. View at Publisher · View at Google Scholar
  51. S. Y. Yang, Y. S. Choo, S. Kim, S. K. Lim, J. Lee, and H. Park, “Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals,” Applied Catalysis B, vol. 111-112, pp. 317–325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. Q. Chen, D. Shi, Y. Zhang, and Y. Wang, “Phenol degradation on novel nickel-antimony doped tin dioxide electrode,” Water Science and Technology, vol. 62, no. 9, pp. 2090–2095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. H. Wang, K. Y. Chan, X. Y. Li, and S. K. So, “Electrochemical degradation of 4-chlorophenol at nickel-antimony doped tin oxide electrode,” Chemosphere, vol. 65, no. 7, pp. 1087–1093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. P. A. Christensen, K. Zakaria, and T. P. Curtis, “Structure and activity of Ni-and Sb-doped SnO2 ozone anodes,” Ozone: Science & Engineering, vol. 34, pp. 49–56, 2012. View at Google Scholar
  55. Y. Wang, S. Cheng, and K. Chan, “Synthesis of ozone from air via a polymer-electrolyte-membrane cell with a doped tin oxide anode,” Green Chemistry, vol. 8, no. 6, pp. 568–572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Cui, Y. Wang, B. Wang, H. Zhou, K. Chan, and X. Li, “Electrochemical generation of ozone in a membrane electrode assembly cell with convective flow,” Journal of the Electrochemical Society, vol. 156, no. 4, pp. E75–E80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. B. Parsa, M. Abbasi, and A. Cornell, “Improvement of the current efficiency of the TiSn-Sb-Ni oxide electrode via carbon nanotubes for ozone generation,” Journal of the Electrochemical Society, vol. 159, no. 5, pp. D265–D269, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. H. Wang, Electrochemical generation of ozone on antimony and nickel doped tin oxide [Ph.D. thesis], The University of Hong Kong, Hong Kong, July 2006.
  59. G. Li, Y. H. Wang, and Q. Y. Chen, “Influence of fluoride-doped tin oxide interlayer on Ni-Sb-SnO2/Ti electrodes,” Journal of Solid State Electrochemistry, vol. 17, no. 5, pp. 1303–1309, 2013. View at Google Scholar
  60. P. A. Christensen and A. Imkum, “The inhibition of ozone generation at Ni/Sb-SnO2 electrodes in high concentrations of dissolved O3,” Ozone: Science & Engineering, vol. 33, no. 5, pp. 389–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. P. C. Foller and M. L. Goodwin, “The electrochemical generation of high concentration ozone for small-scale applications,” Ozone: Science & Engineering, vol. 6, no. 1, pp. 29–36, 1984. View at Google Scholar · View at Scopus
  62. P. C. Foller and G. H. Kelsall, “Ozone generation via the electrolysis of fluoboric acid using glassy carbon anodes and air depolarized cathodes,” Journal of Applied Electrochemistry, vol. 23, no. 10, pp. 996–1010, 1993. View at Publisher · View at Google Scholar · View at Scopus
  63. P. C. Foller, M. L. Goodwin, and C. W. Tobias, “Glassy-carbon anodes and air-depolarized cathodes for the generation of ozone,” Journal of the Electrochemical Society, vol. 130, pp. C113–C118, 1983. View at Google Scholar
  64. N. Katsuki, S. Wakita, Y. Nishiki, T. Shimamune, Y. Akiba, and M. Iida, “Electrolysis by using diamond thin film electrodes,” Japanese Journal of Applied Physics, vol. 36, no. 3 A, pp. L260–L263, 1997. View at Google Scholar · View at Scopus
  65. N. Katsuki, E. Takahashi, M. Toyoda et al., “Water electrolysis using diamond thin-film electrodes,” Journal of the Electrochemical Society, vol. 145, no. 7, pp. 2358–2362, 1998. View at Google Scholar · View at Scopus
  66. S. Park, “Stable ozone generation by using boron-doped diamond electrodes,” Russian Journal of Electrochemistry, vol. 39, no. 3, pp. 321–322, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Park, G. Kim, J. Park, Y. Einaga, and A. Fujishima, “Use of boron-doped diamond electrode in ozone generation,” Journal of New Materials for Electrochemical Systems, vol. 8, no. 1, pp. 65–68, 2005. View at Google Scholar · View at Scopus
  68. A. Kraft, M. Stadelmann, M. Wünsche, and M. Blaschke, “Electrochemical ozone production using diamond anodes and a solid polymer electrolyte,” Electrochemistry Communications, vol. 8, no. 5, pp. 883–886, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. L. M. Da Silva, D. V. Franco, L. A. De Faria, and J. F. C. Boodts, “Surface, kinetics and electrocatalytic properties of Ti/(IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production,” Electrochimica Acta, vol. 49, no. 22-23, pp. 3977–3988, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. M. H. P. Santana, L. A. De Faria, and J. F. C. Boodts, “Investigation of the properties of Ti/[IrO2-Nb2O5] electrodes for simultaneous oxygen evolution and electrochemical ozone production, EOP,” Electrochimica Acta, vol. 49, no. 12, pp. 1925–1935, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Kaneda, M. Ikematsu, M. Iseki et al., “A novel electrode for ozone generation,” Chemistry Letters, vol. 34, no. 10, pp. 1320–1321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Kaneda, M. Ikematsu, Y. Koizumi et al., “Ozone generation by a TaOx and Pt composite insulator-coated Ti electrode,” Electrochemical and Solid-State Letters, vol. 8, no. 6, pp. J13–J16, 2005. View at Publisher · View at Google Scholar · View at Scopus