Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2013, Article ID 424561, 7 pages
http://dx.doi.org/10.1155/2013/424561
Research Article

Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

1Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
2Chemical and Materials Engineering Department, University of Dayton, Dayton, OH 45469, USA

Received 18 February 2013; Accepted 20 March 2013

Academic Editor: Benjamín R. Scharifker

Copyright © 2013 Eric Broaddus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Steinhart, J. H. Wendorff, and R. B. Wehrspohn, “Nanotubes à la Carte: Wetting of Porous Templates,” ChemPhysChem, vol. 4, no. 11, pp. 1171–1176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Steinhart, Z. Jia, A. K. Schaper, R. B. Wehrspohn, U. Gösele, and J. H. Wendorff, “Palladium nanotubes with tailored wall morphologies,” Advanced Materials, vol. 15, no. 9, pp. 706–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Luo, S. K. Lee, H. Hofmeister, M. Steinhart, and U. Gösele, “Pt nanoshell tubes by template wetting,” Nano Letters, vol. 4, no. 1, pp. 143–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Göring, E. Pippel, H. Hofmeister, R. B. Wehrspohn, M. Steinhart, and U. Gösele, “Gold/carbon composite tubes and gold nanowires by impregnating templates with hydrogen tetrachloroaurate/acetone solutions,” Nano Letters, vol. 4, no. 6, pp. 1121–1125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Piao, H. Lim, J. Y. Chang, W. Y. Lee, and H. Kim, “Nanostructured materials prepared by use of ordered porous alumina membranes,” Electrochimica Acta, vol. 50, no. 15, pp. 2997–3013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Xu, Z. Zhang, and X. Yang, “Electrocatalytic oxidation of methanol on Pd nanowire electrode in alkaline media,” Rare Metal Materials and Engineering, vol. 39, no. 1, pp. 129–133, 2010. View at Google Scholar · View at Scopus
  7. S. M. Choi, J. H. Kim, J. Y. Jung, E. Y. Yoon, and W. B. Kim, “Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation,” Electrochimica Acta, vol. 53, no. 19, pp. 5804–5811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. Napolskii, P. J. Barczuk, S. Y. Vassiliev, A. G. Veresov, G. A. Tsirlina, and P. J. Kulesza, “Templating of electrodeposited platinum group metals as a tool to control catalytic activity,” Electrochimica Acta, vol. 52, no. 28, pp. 7910–7919, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. J. Song, S. B. Han, and K. W. Park, “Pt nanowire electrodes electrodeposited in PVP for methanol electrooxidation,” Materials Letters, vol. 64, no. 18, pp. 1981–1984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Cheng, X. Dai, H. Wang, S. P. Jiang, M. Zhang, and C. Xu, “Synergistic effect of Pd-Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation,” Electrochimica Acta, vol. 55, no. 7, pp. 2295–2298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. W. C. Choi and S. I. Woo, “Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell,” Journal of Power Sources, vol. 124, no. 2, pp. 420–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Kim, H. I. Joh, S. M. Jo et al., “Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation,” Electrochimica Acta, vol. 55, no. 16, pp. 4827–4835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. S. He, C. G. Hu, and H. Liu, “Fabrication of 3D Pt catalysts via support of Na2Ti3O7 nanowires for methanol and ethanol electrooxidation,” Catalysis Communications, vol. 12, no. 2, pp. 100–104, 2010. View at Publisher · View at Google Scholar
  14. L. Su, W. Jia, A. Schempf, and Y. Lei, “Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium,” Electrochemistry Communications, vol. 11, no. 11, pp. 2199–2202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Sun, G. Zhang, D. Geng et al., “Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable: 3D electrodes for highly active electrocatalysts,” Chemistry, vol. 16, no. 3, pp. 829–835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Gu, X. Cong, and Y. Ding, “Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation,” ChemPhysChem, vol. 11, no. 4, pp. 841–846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. X. Liang, J. Y. Shi, S. J. Liao, and J. H. Zeng, “Noble metal nanowires incorporated Nafion membranes for reduction of methanol crossover in direct methanol fuel cells,” International Journal of Hydrogen Energy, vol. 35, no. 17, pp. 9182–9185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. I. S. Park, J. H. Choi, and Y. E. Sung, “Synthesis of 3 nm Pt nanowire using MCM-41 and electrocatalytic activity in methanol electro-oxidation,” Electrochemical and Solid-State Letters, vol. 11, no. 5, pp. B71–B75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Wang and Q. Jiang, “Developing nanoscale inertial measurement systems with carbon nanotube oscillators,” Nanotechnology, vol. 19, no. 8, Article ID 085708, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Zhong, C. L. Xu, L. B. Kong, and H. L. Li, “Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method,” Applied Surface Science, vol. 255, no. 5, pp. 3388–3393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Y. Zhao, C. L. Xu, D. J. Guo, H. Li, and H. L. Li, “Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation,” Journal of Power Sources, vol. 162, no. 1, pp. 492–496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Meng, S. Sun, J. P. Masse, and J. P. Dodelet, “Electrosynthesis of Pd single-crystal nanothorns and their application in the oxidation of formic acid,” Chemistry of Materials, vol. 20, no. 22, pp. 6998–7002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Wang, Y. Chen, H. Liu, R. Li, and X. Sun, “Synthesis of Pd nanowire networks by a simple template-free and surfactant-free method and their application in formic acid electrooxidation,” Electrochemistry Communications, vol. 12, no. 2, pp. 219–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Anastasescu, M. Anastasescu, M. Zaharescu, and I. Balint, “Platinum-modified SiO2 with tubular morphology as efficient membrane-type microreactors for mineralization of formic acid,” Journal of Nanoparticle Research, vol. 14, article 1198, 2012. View at Publisher · View at Google Scholar
  25. Y. Kim, H. J. Kim, Y. S. Kim, S. M. Choi, M. H. Seo, and W. B. Kim, “Shape- and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation,” Journal of Physical Chemistry C, vol. 116, no. 34, pp. 18093–18100, 2012. View at Publisher · View at Google Scholar
  26. X. Zhang, W. Lu, J. Da, H. Wang, D. Zhao, and P. A. Webley, “Porous platinum nanowire arrays for direct ethanol fuel cell applications,” Chemical Communications, no. 2, pp. 195–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Steinhart, R. B. Wehrspohn, U. Gösele, and J. H. Wendorff, “Nanotubes by template wetting: a modular assembly system,” Angewandte Chemie, vol. 43, no. 11, pp. 1334–1344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, and T. Barnard, “Direct formic acid fuel cells,” Journal of Power Sources, vol. 111, no. 1, pp. 83–89, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Rice, S. Ha, R. I. Masel, and A. Wieckowski, “Catalysts for direct formic acid fuel cells,” Journal of Power Sources, vol. 115, no. 2, pp. 229–235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Yu and P. G. Pickup, “Recent advances in direct formic acid fuel cells (DFAFC),” Journal of Power Sources, vol. 182, no. 1, pp. 124–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Zhu, S. Y. Ha, and R. I. Masel, “High power density direct formic acid fuel cells,” Journal of Power Sources, vol. 130, no. 1-2, pp. 8–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Giner, “The anodic oxidation of methanol and formic acid and the reductive. Adsorption of CO2,” Electrochimica Acta, vol. 9, no. 1, pp. 63–77, 1964. View at Google Scholar · View at Scopus
  33. A. Capon and R. Parsons, “The oxidation of formic acid on noble metal electrodes II. A comparison of the behaviour of pure electrodes,” Journal of Electroanalytical Chemistry, vol. 44, no. 2, pp. 239–254, 1973. View at Google Scholar · View at Scopus
  34. K. Kunimatsu, “Infrared spectroscopic study of methanol and formic acid adsorbates on a platinum electrode, part I: comparison of the infrared absorption intensities of linear CO(a) derived from CO, CH3OH and HCOOH,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 213, no. 1, pp. 149–157, 1986. View at Publisher · View at Google Scholar
  35. D. S. Corrigan and M. J. Weaver, “Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy,” Journal of Electroanalytical Chemistry, vol. 241, no. 1-2, pp. 143–162, 1988. View at Google Scholar · View at Scopus
  36. R. Parsons and T. VanderNoot, “The oxidation of small organic molecules. A survey of recent fuel cell related research,” Journal of Electroanalytical Chemistry, vol. 257, no. 1-2, pp. 9–45, 1988. View at Google Scholar · View at Scopus
  37. R. S. Jayashree, J. S. Spendelow, J. Yeom, C. Rastogi, M. A. Shannon, and P. J. A. Kenis, “Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells,” Electrochimica Acta, vol. 50, no. 24, pp. 4674–4682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. L. Gojković and T. R. Vidaković, “Methanol oxidation on an ink type electrode using Pt supported on high area carbons,” Electrochimica Acta, vol. 47, no. 4, pp. 633–642, 2001. View at Publisher · View at Google Scholar
  39. D. T. Sawyer, A. Sobkowiak, J. Julian, and L. Roberts, Electrochemistry for Chemists, John Wiley & Sons, New York, NY, USA, 2nd edition, 1995.
  40. G. Q. Lu, A. Crown, and A. Wieckowski, “Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes,” Journal of Physical Chemistry B, vol. 103, no. 44, pp. 9700–9711, 1999. View at Google Scholar · View at Scopus
  41. L. Palaikis and A. Wieckowski, “A catalytic study of formic acid oxidation on preferentially oriented platinum electrodes,” Catalysis Letters, vol. 3, no. 2, pp. 143–158, 1989. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Chen, J. Kim, S. Sun, and S. Chen, “Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid,” Langmuir, vol. 23, no. 22, pp. 11303–11310, 2007. View at Publisher · View at Google Scholar · View at Scopus