Table of Contents Author Guidelines Submit a Manuscript
International Journal of Forestry Research
Volume 2013, Article ID 892327, 7 pages
Research Article

Modeling the Influence of Forest Structure on Microsite Habitat Use by Snowshoe Hares

1Department of Wildlife Ecology, University of Maine, 210 Nutting Hall, Orono, ME 04469, USA
2U.S. Geological Survey, New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources, 211 Fernow Hall, Ithaca, NY 14853, USA

Received 20 May 2013; Revised 19 August 2013; Accepted 26 August 2013

Academic Editor: Ursula Nopp-Mayr

Copyright © 2013 Angela K. Fuller and Daniel J. Harrison. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Snowshoe hare (Lepus americanus) is an important prey species for many Carnivora and has strong influences on community structure and function in northern forests. An understanding of within-stand (microsite) forest structural characteristics that promote high use by hares is important to provide forest management guidelines. We measured forest structural characteristics at the microsite-scale in north-central Maine and used an information-theoretic modeling approach to infer which characteristics were most strongly associated with use by hares during winter. We measured overwinter hare pellet density to model relationships among microsite-scale vegetation structure and hare use. Overwinter pellet density was positively associated with live stem cover (3 × coniferous saplings + deciduous saplings) and negatively associated with overstory canopy closure; the two variables explained 71% of the variation in microsite use by hares. The highest pellet densities were in grids with canopy closure <72% and stem cover units >22,000 stems/ha. Silvicultural practices that create dense areas of conifer and deciduous saplings should receive high within-stand use by hares in winter. These conditions can be achieved by promoting the release of advanced regeneration and reducing overstory cover to encourage establishment of shade-intolerant species; clearcutting is one such silvicultural prescription to achieve these conditions.