Table of Contents Author Guidelines Submit a Manuscript
International Journal of Food Science
Volume 2013, Article ID 243412, 8 pages
http://dx.doi.org/10.1155/2013/243412
Research Article

Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup

1Department of Food and Nutritional Sciences, Tuskegee University, 300-A Campbell Hall, Tuskegee, AL 36088, USA
2Center for Advanced Material Science Testing, Tuskegee University, Tuskegee, AL 36088, USA

Received 10 July 2013; Accepted 21 November 2013

Academic Editor: Alejandro Castillo

Copyright © 2013 Brunson Dominque et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Y. Dansby and A. C. Bovell-Benjamin, “Physical properties and sixth graders' acceptance of an extruded ready-to-eat sweetpotato breakfast cereal,” Journal of Food Science, vol. 68, no. 8, pp. 2607–2612, 2003. View at Google Scholar · View at Scopus
  2. M. A. Dansby and A. C. Bovell-Benjamin, “Sensory characterization of a ready-to-eat sweetpotato breakfast cereal by descriptive analysis,” Journal of Food Science, vol. 68, no. 2, pp. 706–709, 2003. View at Google Scholar · View at Scopus
  3. J. L. Greene and A. C. Bovell-Benjamin, “Macroscopic and sensory evaluation of bread supplemented with sweet-potato flour,” Journal of Food Science, vol. 69, no. 4, pp. 67–173, 2004. View at Google Scholar · View at Scopus
  4. C. S. Hathorn, M. A. Biswas, P. N. Gichuhi, and A. C. Bovell-Benjamin, “Comparison of chemical, physical, micro-structural, and microbial properties of breads supplemented with sweetpotato flour and high-gluten dough enhancers,” Food Science and Technology, vol. 41, no. 5, pp. 803–815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. A. Miller, Optimization and evaluation of a hydroponic sweetpotato syrup [M.S. thesis], Tuskegee University Library, Tuskegee, Ala, USA, 2003.
  6. S. Ibrahim, Influence of pH, concentration time, and α-amylase on the physical properties and acceptability of sweetpotato syrup [M.S. thesis], Tuskegee University Library, Tuskegee, Ala, USA, 2004.
  7. S. Moultrie, Quality characteristics and microflora of a newly developed sweetpotato beverage [M.S. thesis], Tuskegee University Library, Tuskegee, Ala, USA, 2009.
  8. R. Hoover, “Composition, molecular structure, and physicochemical properties of tuber and root starches: a review,” Carbohydrate Polymers, vol. 45, no. 3, pp. 253–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Aina, K. O. Falude, J. O. Akingbala, and P. Titus, “Physicochemical properties of Caribbean sweetpotato (Ipomoea batatas (L.) Lam) starches.,” Food and Bioprocess Technology, vol. 5, no. 2, pp. 576–583, 2010. View at Publisher · View at Google Scholar
  10. R. Johnson, G. Padmaja, and S. N. Moorthy, “Comparative production of glucose and high fructose syrup from cassava and sweet potato roots by direct conversion techniques,” Innovative Food Science and Emerging Technologies, vol. 10, no. 4, pp. 616–620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. C. Gore, H. C. Reese, and J. O. Reed, “Production of syrup from sweet potatoes,” Journal of the Franklin Institute, vol. 196, no. 4, p. 548, 1923. View at Publisher · View at Google Scholar
  12. V. C. K. Silayo, J. Y. Lu, and H. A. Aglan, “Development of a pilot system for converting sweet potato starch into glucose syrup,” Habitation, vol. 9, no. 1-2, pp. 9–15, 2003. View at Google Scholar
  13. R. Johnson, S. N. Moorthy, and G. Padmaja, “Production of high fructose syrup from cassava and sweet potato flours and their blends with cereal flours,” Food Science and Technology International, vol. 16, no. 3, pp. 251–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. P. K. W. Herh, S. M. Colo, N. Roye, and K. Hedman, “Rheology of foods: new techniques, capabilities, and instruments,” American Laboratory, vol. 32, no. 12, pp. 16–20, 2000. View at Google Scholar · View at Scopus
  15. J. Ahmed and H. S. Ramaswamy, “Viscoelastic properties of sweet potato puree infant food,” Journal of Food Engineering, vol. 74, no. 3, pp. 376–382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Ahuja and N. Jespersen, Modern Instrumental Analysis, Elsevier, Cambridge, Mass, USA, 2006.
  17. M. O. Ngadi and L. J. Yu, “Rheological properties of Canadian maple syrup,” Canadian Biosystems Engineering, vol. 46, pp. 15–18, 2004. View at Google Scholar · View at Scopus
  18. J. Budke, J. M. Garcia, and E. Chambers IV, “Comparisons of thickened beverages using line spread measurements,” Journal of the American Dietetic Association, vol. 108, no. 9, pp. 1532–1535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Oestergaard and S. L. Kundsen, “Use of sweetenzyme in industrial continuous isomerization various process alternatives and corresponding product types,” Starch, vol. 28, no. 10, pp. 350–356, 1976. View at Publisher · View at Google Scholar
  20. W. D. Crabb and J. K. Shetty, “Commodity scale production of sugars from starches,” Current Opinion in Microbiology, vol. 2, no. 3, pp. 252–256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Branen, P. Davidson, and S. Salminen, Food Additives, CRC Press, Boca Raton, Fla, USA, 2002.
  22. T. Kasumi, K. Hayashi, and N. Tsumura, “Roles of magnesium and cobalt in the reaction of glucose isomerase from Streptomyces griseofuscus S-41,” Agricultural and Biological Chemistry, vol. 46, no. 1, pp. 21–30, 1982. View at Google Scholar
  23. H. Sulaiman, O. Sasaki, T. Shimotashiro, N. Chishaki, and S. Inanaga, “Effect of calcium concentration on the shape of sweet potato (Ipomoea batatas Lam.) tuberous root,” Plant Production Science, vol. 7, no. 4, pp. 485–489, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Abu-Jdayil, H. A. Mohameed, and A. Eassa, “Rheology of wheat starch-milk-sugar systems: effect of starch concentration, sugar type and concentration, and milk fat content,” Journal of Food Engineering, vol. 64, no. 2, pp. 207–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Kapoor and M. Bhattacharya, “Steady shear and transient properties of starch in dimethylsulfoxide,” Carbohydrate Polymers, vol. 44, no. 3, pp. 217–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Gropper, J. Smith, and J. Groff, Advanced Nutrition and Human Metabolism, Thomson Brooks/Cole Publishing, Florence, Ky, USA, 4th edition, 2005.
  27. Kelco Oil Field Group, “Rheology Technical Bulletin,” 2006, http://www.kofg.com/Technical%20Bulletins/E.%20Rheology/5.%20KOFGRheologyEnglish.pdf.
  28. M. Habibi-Najafi and Z. Alaei, “Rheological properties of date syrup/sesame paste blend,” World Journal of Dairy & Food Sciences, vol. 1, no. 1, pp. 1–5, 2006. View at Google Scholar
  29. A. T. Johnson, Biological Process Engineering: An Analogical Approach to Fluid Flow, Heat Transfer and Mass Transfer Applied to Biological Systems, John Wiley and Sons, New York, NY, USA, 1997.
  30. M. Hurtta, I. Pitkänen, and J. Knuutinen, “Melting behaviour of D-sucrose, D-glucose and D-fructose,” Carbohydrate Research, vol. 339, no. 13, pp. 2267–2273, 2004. View at Publisher · View at Google Scholar · View at Scopus