Table of Contents Author Guidelines Submit a Manuscript
International Journal of Food Science
Volume 2014 (2014), Article ID 721067, 11 pages
http://dx.doi.org/10.1155/2014/721067
Research Article

The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana

1Department of Nutrition and Food Science, University of Ghana, P.O. Box LG 25, Legon, Ghana
2Department of Applied Biology, Faculty of Applied Sciences, University for Development Studies, Navrongo Campus, P.O. Box 24, Navrongo, Ghana
3Food Technology Department (DTA/IRSAT/CNRST), BP 7074, Ouagadougou 03, Burkina Faso
4Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark

Received 16 July 2014; Revised 10 November 2014; Accepted 10 November 2014; Published 2 December 2014

Academic Editor: Rosana G. Moreira

Copyright © 2014 Fortune Akabanda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Owusu-Kwarteng, F. Akabanda, D. S. Nielsen, K. Tano-Debrah, R. L. K. Glover, and L. Jespersen, “Identification of lactic acid bacteria isolated during traditional fura processing in Ghana,” Food Microbiology, vol. 32, no. 1, pp. 72–78, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Akabanda, J. Owusu-Kwarteng, K. Tano-Debrah, R. L. K. Glover, D. S. Nielsen, and L. Jespersen, “Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product,” Food Microbiology, vol. 34, no. 2, pp. 277–283, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Obodai and C. E. R. Dodd, “Characterization of dominant microbiota of a Ghanaian fermented milk product, nyarmie, by culture- and nonculture-based methods,” Journal of Applied Microbiology, vol. 100, no. 6, pp. 1355–1363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Akabanda, J. Owusu-Kwarteng, R. K. L. Glover, and K. Tano-Debrah, “Microbiological characteristics of Ghanaian traditional fermented milk product, Nunu,” Nature and Science, vol. 8, pp. 178–187, 2010. View at Google Scholar
  5. E. H. E. Ayad, S. Nashat, N. El-Sadek, H. Metwaly, and M. El-Soda, “Selection of wild lactic acid bacteria isolated from traditional Egyptian dairy products according to production and technological criteria,” Food Microbiology, vol. 21, no. 6, pp. 715–725, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. O. N. Donkor, A. Henriksson, T. Vasiljevic, and N. P. Shah, “Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk,” Lait, vol. 87, no. 1, pp. 21–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. G. Leuschner, P. M. Kenneally, and E. K. Arendt, “Method for the rapid quantitative detection of lipolytic activity among food fermenting microorganisms,” International Journal of Food Microbiology, vol. 37, no. 2-3, pp. 237–240, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Bonade, A. J. Dagnan, and M. J. Garver, “Production of helveticin from Lactobacillus helveticus,” Letters in Applied Microbiology, vol. 33, pp. 153–158, 2001. View at Publisher · View at Google Scholar
  9. J. P. Guiraud, Microbiologie Alimentaire, Dunod Microsoft Press, Paris, France, 1998.
  10. E. P. Knoshaug, J. A. Ahlgren, and J. E. Trempy, “Growth associated exopolysaccharide expression in Lactococcus lactissubspeciescremoris ropy 352,” Journal of Dairy Science, vol. 83, no. 4, pp. 633–640, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. K. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric method for determination of sugars and related substances,” Analytical Chemistry, vol. 28, no. 3, pp. 350–356, 1956. View at Publisher · View at Google Scholar · View at Scopus
  12. M. T. C. Ojinnaka and P. C. Ojimelukwe, “Study of the volatile compounds and amino acid profile in Bacillus fermented castor oil bean condiment,” Journal of Food Research, vol. 2, pp. 191–203, 2013. View at Google Scholar
  13. T. Idoul and N. E. Karam, “Lactic acid bacteria from Jijel’s traditional butter: isolation, identification and major technological traits,” Grasas y Aceites, vol. 59, no. 4, pp. 361–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Y. Haddadin, “Kinetic studies and sensorial analysis of Lactic Acid Bacteria isolated from white cheese made from sheep raw milk,” Pakistan Journal of Nutrition, vol. 4, pp. 78–84, 2005. View at Google Scholar
  15. P. Sarantinopoulos, C. Andrighetto, M. D. Georgalaki et al., “Biochemical properties of enterococci relevant to their technological performance,” International Dairy Journal, vol. 11, no. 8, pp. 621–647, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. Freitas, A. E. Pintado, M. E. Pintado, and F. X. Malcata, “Role of dominant microflora of Picante cheese on proteolysis and lipolysis,” International Dairy Journal, vol. 9, no. 9, pp. 593–603, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. H. S. Park and E. H. Marth, “Behaviour of Salmonella typhimurium in skim milk during fermentation by lactic acid bacteria,” Journal of Milk and Food Technology, vol. 35, pp. 482–488, 1972. View at Google Scholar
  18. F. Durlu-Ozkaya, V. Xanthopoulos, N. Tunail, and E. Litopoulou-Tzanetaki, “Technologically important properties of lactic acid bacteria isolates from Beyaz cheese made from raw ewes' milk,” Journal of Applied Microbiology, vol. 91, no. 5, pp. 861–870, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Dagdemir and S. Ozdemir, “Technological characterization of the natural lactic acid bacteria of artisanal Turkish White Pickled cheese,” International Journal of Dairy Technology, vol. 61, no. 2, pp. 133–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. D. Peterson, R. T. Marshall, and H. Heymann, “Peptidase profiling of lactobacilli associated with Cheddar cheese and its application to identification and selection of strains of Cheese-ripening studies,” Journal of Dairy Science, vol. 73, pp. 1454–1464, 1990. View at Google Scholar
  21. L. Axelsson, “Lactic acid bacteria: classification and physiology,” in Lactic Acid Bacteria: Microbiology and Functional Aspects, S. Salminen and A. von Wright, Eds., pp. 1–72, Marcel Dekker, New York, NY, USA, 1998. View at Google Scholar
  22. J. E. Christensen, E. G. Dudley, J. A. Pederson, and J. L. Steele, “Peptidases and amino acid catabolism in lactic acid bacteria,” Antonie van Leeuwenhoek, vol. 76, no. 1–4, pp. 217–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Tsakalidou, E. Manolopoulou, E. Kabaraki et al., “The combined use of whole-cell protein extracts for the identification (SDS-PAGE) and enzyme activity screening of lactic acid bacteria isolated from traditional Greek dairy products,” Systematic and Applied Microbiology, vol. 17, no. 3, pp. 444–458, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Aravindan, P. Anbumathi, and T. Viruthagiri, “Lipase applications in food industry,” Indian Journal of Biotechnology, vol. 6, no. 2, pp. 141–158, 2007. View at Google Scholar · View at Scopus
  25. V. Ramakrishnan, B. Balakrishnan, A. K. Rai, B. Narayan, and P. M. Halami, “Concomitant production of lipase, protease and enterocin by Enterococcus faecium NCIM5363 and Enterococcus durans NCIM5427 isolated from fish processing waste,” International Aquatic Research, vol. 4, p. 14, 2012. View at Google Scholar
  26. P. Ruas-Madiedo, M. Gueimonde, A. Margolles, C. G. De Los Reyes-Gavilán, and S. Salminen, “Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus,” Journal of Food Protection, vol. 69, no. 8, pp. 2011–2015, 2006. View at Google Scholar · View at Scopus
  27. A. Becker, F. Katzen, A. Pühler, and L. Ielpi, “Xanthan gum biosynthesis and application: a biochemical/genetic perspective,” Applied Microbiology and Biotechnology, vol. 50, no. 2, pp. 145–152, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Cerning and V. M. E. Marshall, “Exopolysaccharides produced by the dairy lactic acid bacteria,” Recent Results and Developments, vol. 3, pp. 195–209, 1999. View at Google Scholar
  29. A. Patel and J. B. Prajapati, “Food and health applications of exopolysaccharides produced by lactic acid bacteria,” Advances in Dairy Research, vol. 1, p. 107, 2013. View at Google Scholar
  30. H. M. Stack, N. Kearney, C. Stanton, G. F. Fitzgerald, and R. P. Ross, “Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli,” Applied and Environmental Microbiology, vol. 76, no. 2, pp. 500–507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M.-A. Levrat-Verny, S. Behr, V. Mustad, C. Rémésy, and C. Demigné, “Low levels of viscous hydrocolloids lower plasma cholesterol in rats primarily by impairing cholesterol absorption,” The Journal of Nutrition, vol. 130, no. 2, pp. 243–248, 2000. View at Google Scholar · View at Scopus
  32. H. Maeda, X. Zhu, S. Suzuki, K. Suzuki, and S. Kitamura, “Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2B T,” Journal of Agricultural and Food Chemistry, vol. 52, no. 17, pp. 5533–5538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Kim, S. oh, and S. H. Kim, “Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7,” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 324–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Ruas-Madiedo, M. Gueimonde, A. Margolles, C. G. de los Reyes-Gavilán, and S. Salminen, “Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus,” Journal of Food Protection, vol. 69, no. 8, pp. 2011–2015, 2006. View at Google Scholar · View at Scopus
  35. F. Dal Bello, J. Walter, C. Hertel, and W. P. Hammes, “In vitro study of prebiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis,” Systematic and Applied Microbiology, vol. 24, no. 2, pp. 232–237, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Hongpattarakere, N. Cherntong, S. Wichienchot, S. Kolida, and R. A. Rastall, “In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria,” Carbohydrate Polymers, vol. 87, no. 1, pp. 846–852, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Kivanç, “Antagonistic action of lactic cultures toward spoilage and pathogenic microorganisms in food.,” Die Nahrung, vol. 34, no. 3, pp. 273–277, 1990. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Tadesse, E. Ephraim, and M. Ashenafi, “Assessment of the antimicrobial activity of lactic acid bacteria isolated from Borde and Shamita, traditional Ethiopian fermented beverages, on some foodborne pathogens and effect of growth medium on the inhibitory activity,” Internet Journal of Food Safety, vol. 5, pp. 13–20, 2005. View at Google Scholar
  39. O. R. Afolabi, O. M. Bankole, and O. J. Olaitan, “Production and characterization of antimicrobial agents by Lactic Acid Bacteria Isolated from Fermented Foods,” The Internet Journal of Microbiology, vol. 4, p. 2, 2008. View at Google Scholar
  40. I. A. Adesokan, B. B. Odetoyinbo, and A. O. Olubamiwa, “Biopreservative activity of lactic acid bacteria on suya produced from poultry meat,” African Journal of Biotechnology, vol. 7, no. 20, pp. 3799–3803, 2008. View at Google Scholar · View at Scopus
  41. M. Raccah, R. C. Baker, J. M. Degenstein, and E. J. Mulnix, “Potential application of microbial antagonism to extend storage ability of a flesh type food,” Journal of Food Science, vol. 44, pp. 43–46, 1979. View at Publisher · View at Google Scholar
  42. J. L. Smith and S. A. Palumbo, “Use of starter cultures in meat,” Journal of Food Protection, vol. 46, pp. 997–1006, 1983. View at Google Scholar
  43. L. M. Cintas, P. Casaus, H. Holo, P. E. Hernandez, I. F. Nes, and L. S. Håvarstein, “Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins,” Journal of Bacteriology, vol. 180, no. 8, pp. 1988–1994, 1998. View at Google Scholar · View at Scopus
  44. S. M. Wakil and U. O. Osamwonyi, “Isolation and screening of antimicrobial producing lactic acid bacteria from fermenting millet gruel,” International Research Journal of Microbiology, vol. 3, pp. 72–79, 2012. View at Google Scholar
  45. M. A. Daeschel, “Applications and interactions of bacteriocins from lactic acid bacteria in foods and beverages,” in Bacteriocins of Lactic Acid Bacteria, pp. 63–91, Academic Press, New York, NY, USA, 1993. View at Google Scholar
  46. S. Condon, “Aerobic metabolism of lactic acid bacteria,” Irish Journal of Food Science and Technology, vol. 7, pp. 5–25, 1983. View at Google Scholar
  47. E. L. Thomas and K. A. Pera, “Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide,” Journal of Bacteriology, vol. 154, no. 3, pp. 1236–1244, 1983. View at Google Scholar · View at Scopus
  48. E. A. Muradyan, L. A. Erzhynkyan, and M. S. Sapondzhyan, “Composition of free amino acids in fermented milk products,” Biologicheskii Zhurnal Armenii, vol. 29, pp. 111–112, 1986. View at Google Scholar
  49. V. R. Young, “Protein and amino acids,” in Present Knowledge of Nutrition, B. A. Bowman and R. M. Russel, Eds., pp. 43–58, ILSI Press, Washington, DC, USA, 8th edition, 2001. View at Google Scholar
  50. A. Haug, A. T. Høstmark, and O. M. Harstad, “Bovine milk in human nutrition—a review,” Lipids in Health and Disease, vol. 6, article 25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. FAO/WHO/UNU (Expert Consultation), “Protein and amino acid requirements in human nutrition,” WHO Technical Report, Food and Agriculture Organization/World Health Organization/United Nations, Geneva, Switzerland, 2007. View at Google Scholar
  52. M. F. Fuller and P. J. Garlick, “Human amino acid requirements: can the controversy be resolved?” Annual Review of Nutrition, vol. 14, pp. 217–241, 1994. View at Publisher · View at Google Scholar · View at Scopus