International Journal of Genomics

International Journal of Genomics / 2002 / Article

Conference Review | Open Access

Volume 3 |Article ID 259617 | 4 pages | https://doi.org/10.1002/cfg.129

Advancing Post-Genome Data and System Integration through Machine Learning

Received30 Oct 2001
Accepted16 Nov 2001

Abstract

Research on biological data integration has traditionally focused on the development of systems for the maintenance and interconnection of databases. In the next few years, public and private biotechnology organisations will expand their actions to promote the creation of a post-genome semantic web. It has commonly been accepted that artificial intelligence and data mining techniques may support the interpretation of huge amounts of integrated data. But at the same time, these research disciplines are contributing to the creation of content markup languages and sophisticated programs able to exploit the constraints and preferences of user domains. This paper discusses a number of issues on intelligent systems for the integration of bioinformatic resources.

Copyright © 2002 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

65 Views | 342 Downloads | 2 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.