Abstract

Catfish is one of the lower teleosts whose genome research is important for evolutionary genomics. As the major aquaculture species in the USA, its genome research also has practical and economical implications. Much progress has been made in recent years, including the development of large numbers of molecular markers, the construction of framework genetic linkage maps, the identification of putative markers involved in performance traits, and the development of genomic resources. Repetitive elements have been identified and characterized in the catfish genome that should facilitate physical analysis of the catfish genome. A large number of genes or full-length cDNAs have been analysed using genomic approaches, providing information on gene structure, gene evolution and gene expression in relation to functions. Catfish genome research has come to a stage when physical mapping through BAC contig construction is greatly demanded, in order to develop regional markers for QTL analysis and for large-scale comparative mapping. The current effort in large-scale EST analysis and type I marker mapping should further enhance research efficiency through comparative mapping. Candidate gene identification is being accelerated through the use of cDNA microarrays.