International Journal of Genomics

International Journal of Genomics / 2007 / Article

Review Article | Open Access

Volume 2007 |Article ID 057513 | https://doi.org/10.1155/2007/57513

Xiaofeng Zhou, Jing Cui, Virgilia Macias, André A. Kajdacsy-Balla, Hui Ye, Jianguang Wang, P. Nagesh Rao, "The Progress on Genetic Analysis of Nasopharyngeal Carcinoma", International Journal of Genomics, vol. 2007, Article ID 057513, 13 pages, 2007. https://doi.org/10.1155/2007/57513

The Progress on Genetic Analysis of Nasopharyngeal Carcinoma

Academic Editor: W. Zhang
Received20 Nov 2007
Accepted09 Dec 2007
Published21 Jan 2008

Abstract

Nasopharyngeal carcinoma (NPC) is a rare malignancy in most parts of the world, but is one of the most common cancers in Southeast Asia. Both genetic and environmental factors contribute to the tumorigenesis of NPC, most notably the consumption of certain salted food items and Epstein-Barr virus infection. This review will focus on the current progress of the genetic analysis of NPC (genetic susceptibilities and somatic alterations). We will review the current advances in genomic technologies and their shaping of the future direction of NPC research.

References

  1. W. I. Wei and J. S. Sham, “Nasopharyngeal carcinoma,” Lancet, vol. 365, no. 9476, pp. 2041–2054, 2005. View at: Publisher Site | Google Scholar
  2. A. T. Chan, P. M. Teo, and P. J. Johnson, “Nasopharyngeal carcinoma,” Annals of Oncology, vol. 13, no. 7, pp. 1007–1015, 2002. View at: Publisher Site | Google Scholar
  3. A. Jeyakumar, T. M. Brickman, A. Jeyakumar, and T. Doerr, “Review of nasopharyngeal carcinoma,” Ear, Nose, & Throat Journal, vol. 85, no. 3, pp. 168–170, 172-173, 184, 2006. View at: Google Scholar
  4. E. M. Diaz, M. S. Kies, E. M. Sturgis et al., “Neoplasms of the head and neck,” in Holland Frei - Cancer Medicine 7, D. W. Kufe, E. Frei III, J. F. Holland et al., Eds., vol. 1149, pp. 1211–1275, Decker, Columbia, BC, Canada, 2006. View at: Google Scholar
  5. A. B. Rickinson and E. Kieff, “Epstein-Barr virus,” in Field’s Virology, D. M. Knipe and P. M. Howley, Eds., pp. 2575–2627, Lippincott, Williams & Wilkins, Philadelphia, Pa, USA, 2001. View at: Google Scholar
  6. E. T. Chang and H.-O. Adami, “The enigmatic epidemiology of nasopharyngeal carcinoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 10, pp. 1765–1777, 2006. View at: Publisher Site | Google Scholar
  7. K. W. Lo, K. F. To, and D. P. Huang, “Focus on nasopharyngeal carcinoma,” Cancer Cell, vol. 5, no. 5, pp. 423–428, 2004. View at: Publisher Site | Google Scholar
  8. W. I. Wei, J. S. T. Sham, Y.-S. Zong, D. Choy, and M. H. Ng, “The efficacy of fiberoptic endoscopic examination and biopsy in the detection of early nasopharyngeal carcinoma,” Cancer, vol. 67, no. 12, pp. 3127–3130, 1991. View at: Publisher Site | Google Scholar
  9. J.-L. Leong, K.-W. Fong, and W.-K. Low, “Factors contributing to delayed diagnosis in nasopharyngeal carcinoma,” Journal of Laryngology and Otology, vol. 113, no. 7, pp. 633–636, 1999. View at: Google Scholar
  10. S. M. Krishna, S. James, J. Kattoor, and P. Balaram, “Serum EBV DNA as a biomarker in primary nasopharyngeal carcinoma of Indian origin,” Japanese Journal of Clinical Oncology, vol. 34, no. 6, pp. 307–311, 2004. View at: Publisher Site | Google Scholar
  11. B. Brennan, “Nasopharyngeal carcinoma,” Orphanet Journal of Rare Diseases, vol. 1, p. 23, 2006. View at: Publisher Site | Google Scholar
  12. J. K. C. Chan, B. Z. Pilch, T. T. Kuo, B. M. Wenig, and A. W. M. Lee, “Tumors of the nasopharynx: introduction,” in Pathology and Genetics of Head and Neck Tumours (World Health Organization Classification of Tumours), L. Barnes, J. W. Eveson, P. Reichart, and D. Sidransky, Eds., pp. 82–84, IARC press, Lyon, France, 2005. View at: Google Scholar
  13. F. L. Greene, D. L. Page, I. D. Fleming et al., American Joint Committee on Cancer: Cancer Staging Manual, Springer, New York, NY, USA, 2002.
  14. W. C. Cho, “Nasopharyngeal carcinoma: molecular biomarker discovery and progress,” Molecular Cancer, vol. 6, p. 1, 2007. View at: Publisher Site | Google Scholar
  15. D. W. Ho, Z. F. Yang, B. Y. Wong et al., “Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry serum protein profiling to identify nasopharyngeal carcinoma,” Cancer, vol. 107, no. 1, pp. 99–107, 2006. View at: Publisher Site | Google Scholar
  16. J. Y. Shao, Y. Zhang, Y. H. Li et al., “Comparison of Epstein-Barr virus DNA level in plasma, peripheral blood cell and tumor tissue in nasopharyngeal carcinoma,” Anticancer Research, vol. 24, no. 6, pp. 4059–4066, 2004. View at: Google Scholar
  17. R. Pathmanathan, U. Prasad, R. Sadler, K. Flynn, and N. Raab-Traub, “Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma,” New England Journal of Medicine, vol. 333, no. 11, pp. 693–698, 1995. View at: Publisher Site | Google Scholar
  18. W. I. Wei, “Nasopharyngeal cancer: current status of management: a New York head and neck society lecture,” Archives of Otolaryngology - Head and Neck Surgery, vol. 127, no. 7, pp. 766–769, 2001. View at: Google Scholar
  19. W. I. Wei and V. W. K. Mok, “The management of neck metastases in nasopharyngeal cancer,” Current Opinion in Otolaryngology and Head and Neck Surgery, vol. 15, no. 2, pp. 99–102, 2007. View at: Publisher Site | Google Scholar
  20. J. H. C. Ho, “An epidemiologic and clinical study of nasopharyngeal carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 4, no. 3-4, pp. 183–198, 1978. View at: Google Scholar
  21. Y. C. Chien, J. Y. Chen, M. Y. Liu et al., “Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men,” New England Journal of Medicine, vol. 345, no. 26, pp. 1877–1882, 2001. View at: Publisher Site | Google Scholar
  22. W. H. Jia, B. J. Feng, Z. L. Xu et al., “Familial risk and clustering of nasopharyngeal carcinoma in Guangdong, China,” Cancer, vol. 101, no. 2, pp. 363–369, 2004. View at: Publisher Site | Google Scholar
  23. Y. X. Zeng and W. H. Jia, “Familial nasopharyngeal carcinoma,” Seminars in Cancer Biology, vol. 12, no. 6, pp. 443–450, 2002. View at: Publisher Site | Google Scholar
  24. P. H. Levine, A. G. Pocinki, P. Madigan, and S. Bale, “Familial nasopharyngeal carcinoma in patients who are not Chinese,” Cancer, vol. 70, no. 5, pp. 1024–1029, 1992. View at: Publisher Site | Google Scholar
  25. C. Suárez, J. P. Rodrigo, A. Ferlito, R. Cabanillas, A. R. Shaha, and A. Rinaldo, “Tumours of familial origin in the head and neck,” Oral Oncology, vol. 42, no. 10, pp. 965–978, 2006. View at: Publisher Site | Google Scholar
  26. J. Friborg, J. Wohlfahrt, A. Koch, H. Storm, O. R. Olsen, and M. Melbye, “Cancer susceptibility in nasopharyngeal carcinoma families—a population-based cohort study,” Cancer Research, vol. 65, no. 18, pp. 8567–8572, 2005. View at: Publisher Site | Google Scholar
  27. J. Friborg, J. Wohlfahrt, and M. Melbye, “Familial risk and clustering of nasopharyngeal carcinoma in Guangdong, China,” Cancer, vol. 103, no. 1, pp. 211–212, 2005. View at: Publisher Site | Google Scholar
  28. W. H. Jia, A. Collins, Y. X. Zeng et al., “Complex segregation analysis of nasopharyngeal carcinoma in Guangdong, China: evidence for a multifactorial mode of inheritance (complex segregation analysis of NPC in China),” European Journal of Human Genetics, vol. 13, no. 2, pp. 248–252, 2005. View at: Publisher Site | Google Scholar
  29. A. Hildesheim, R. J. Apple, C. J. Chen et al., “Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan,” Journal of the National Cancer Institute, vol. 94, no. 23, pp. 1780–1789, 2002. View at: Google Scholar
  30. D. Liebowitz, “Nasopharyngeal carcinoma: the Epstein-Barr virus association,” Seminars in Oncology, vol. 21, no. 3, pp. 376–381, 1994. View at: Google Scholar
  31. S. J. Lu, N. E. Day, L. Degos et al., “Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region,” Nature, vol. 346, no. 6283, pp. 470–471, 1990. View at: Publisher Site | Google Scholar
  32. W. Xiong, Z. Y. Zeng, J. H. Xia et al., “A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma,” Cancer Research, vol. 64, no. 6, pp. 1972–1974, 2004. View at: Publisher Site | Google Scholar
  33. L. Deng, N. Jing, G. Tan et al., “A common region of allelic loss on chromosome region 3p25.3–26.3 in nasopharyngeal carcinoma,” Genes Chromosomes and Cancer, vol. 23, no. 1, pp. 21–25, 1998. View at: Publisher Site | Google Scholar
  34. K. W. Lo, P. M. Teo, A. B. Hui et al., “High resolution allelotype of microdissected primary nasopharyngeal carcinoma,” Cancer Research, vol. 60, no. 13, pp. 3348–3353, 2000. View at: Google Scholar
  35. A. S. Chan, K. F. To, K. W. Lo et al., “High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from Southern Chinese,” Cancer Research, vol. 60, no. 19, pp. 5365–5370, 2000. View at: Google Scholar
  36. B. J. Feng, W. Huang, Y. Y. Shugart et al., “Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4,” Nature Genetics, vol. 31, no. 4, pp. 395–399, 2002. View at: Publisher Site | Google Scholar
  37. X. C. Guo, K. Scott, Y. Liu et al., “Genetic factors leading to chronic Epstein-Barr virus infection and nasopharyngeal carcinoma in South East China: study design, methods and feasibility,” Human Genomics, vol. 2, no. 6, pp. 365–375, 2006. View at: Google Scholar
  38. A. Hildesheim, L. M. Anderson, C. J. Chen et al., “CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan,” Journal of the National Cancer Institute, vol. 89, no. 16, pp. 1207–1212, 1997. View at: Publisher Site | Google Scholar
  39. A. Hildesheim, C. J. Chen, N. E. Caporaso et al., “Cytochrome P4502E1 genetic polymorphisms and risk of nasopharyngeal carcinoma: results from a case-control study conducted in Taiwan,” Cancer Epidemiology Biomarkers and Prevention, vol. 4, no. 6, pp. 607–610, 1995. View at: Google Scholar
  40. D. Tiwawech, P. Srivatanakul, A. Karalak, and T. Ishida, “Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma,” Cancer Letters, vol. 241, no. 1, pp. 135–141, 2006. View at: Publisher Site | Google Scholar
  41. J. T. Friborg, J. M. Yuan, R. Wang, W. P. Koh, H. P. Lee, and M. C. Yu, “A prospective study of tobacco and alcohol use as risk factors for pharyngeal carcinomas in Singapore Chinese,” Cancer, vol. 109, no. 6, pp. 1183–1191, 2007. View at: Publisher Site | Google Scholar
  42. V. Nazar-Stewart, T. L. Vaughan, R. D. Burt, C. Chen, M. Berwick, and G. M. Swanson, “Glutathione S-transferase M1 and susceptibility to nasopharyngeal carcinoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 8, no. 6, pp. 547–551, 1999. View at: Google Scholar
  43. K. Bendjemana, M. Abdennebi, S. Gara et al., “Genetic polymorphism of gluthation-S transferases and N-acetyl transferases 2 and nasopharyngeal carcinoma: the Tunisia experience,” Bulletin du Cancer, vol. 93, no. 3, pp. 297–302, 2006. View at: Google Scholar
  44. D. Tiwawech, P. Srivatanakul, A. Karalak, and T. Ishida, “Glutathione S-transferase M1 gene polymorphism in Thai nasopharyngeal carcinoma,” Asian Pacific Journal of Cancer Prevention, vol. 6, no. 3, pp. 270–275, 2005. View at: Google Scholar
  45. E. Y. Cho, A. Hildesheim, C. J. Chen et al., “Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 10, pp. 1100–1104, 2003. View at: Google Scholar
  46. Y. Cao, X. P. Miao, M. Y. Huang et al., “Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population,” BMC Cancer, vol. 6, p. 167, 2006. View at: Publisher Site | Google Scholar
  47. C. Song, L. Z. Chen, R. H. Zhang, X. J. Yu, and Y. X. Zeng, “Functional variant in the 3-untranslated region of toll-like receptor 4 is associated with nasopharyngeal carcinoma risk,” Cancer Biology and Therapy, vol. 5, no. 10, pp. 1285–1291, 2006. View at: Google Scholar
  48. X.-X. Zhou, W.-H. Jia, G.-P. Shen et al., “Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 5, pp. 862–866, 2006. View at: Publisher Site | Google Scholar
  49. Y. He, G. Zhou, Y. Zhai et al., “Association of PLUNC gene polymorphisms with susceptibility to nasopharyngeal carcinoma in a Chinese population,” Journal of Medical Genetics, vol. 42, no. 2, pp. 172–176, 2005. View at: Publisher Site | Google Scholar
  50. G. Zhou, Y. Zhai, Y. Cui et al., “Functional polymorphisms and haplotypes in the promoter of the MMP2 gene are associated with risk of nasopharyngeal carcinoma,” Human Mutation, vol. 28, no. 11, pp. 1091–1097, 2007. View at: Publisher Site | Google Scholar
  51. H. B. Nasr, S. Mestiri, K. Chahed et al., “Matrix metalloproteinase-1 (-1607) 1G/2G and -9 (-1562) C/T promoter polymorphisms: susceptibility and prognostic implications in nasopharyngeal carcinomas,” Clinica Chimica Acta, vol. 384, no. 1-2, pp. 57–63, 2007. View at: Publisher Site | Google Scholar
  52. Y.-S. Wei, Y.-H. Zhu, B. Du et al., “Association of transforming growth factor-ß1 gene polymorphisms with genetic susceptibility to nasopharyngeal carcinoma,” Clinica Chimica Acta, vol. 380, no. 1-2, pp. 165–169, 2007. View at: Publisher Site | Google Scholar
  53. Y.-S. Wei, X.-H. Kuang, Y.-H. Zhu et al., “Interleukin-10 gene promoter polymorphisms and the risk of nasopharyngeal carcinoma,” Tissue Antigens, vol. 70, no. 1, pp. 12–17, 2007. View at: Publisher Site | Google Scholar
  54. E. Hassen, K. Farhat, S. Gabbouj, M. Jalbout, N. Bouaouina, and L. Chouchane, “TAP1 gene polymorphisms and nasopharyngeal carcinoma risk in a Tunisian population,” Cancer Genetics and Cytogenetics, vol. 175, no. 1, pp. 41–46, 2007. View at: Publisher Site | Google Scholar
  55. H. Sousa, A. M. Santos, R. Catarino et al., “Linkage of TP53 codon 72 pro/pro genotype as predictive factor for nasopharyngeal carcinoma development,” European Journal of Cancer Prevention, vol. 15, no. 4, pp. 362–366, 2006. View at: Publisher Site | Google Scholar
  56. R. J. Catarino, E. Breda, V. Coelho et al., “Association of the A870G cyclin D1 gene polymorphism with genetic susceptibility to nasopharyngeal carcinoma,” Head and Neck, vol. 28, no. 7, pp. 603–608, 2006. View at: Publisher Site | Google Scholar
  57. B. Bel Hadj Jrad, W. Mahfouth, N. Bouaouina et al., “A polymorphism in FAS gene promoter associated with increased risk of nasopharyngeal carcinoma and correlated with anti-nuclear autoantibodies induction,” Cancer Letters, vol. 233, no. 1, pp. 21–27, 2006. View at: Publisher Site | Google Scholar
  58. G. Zhou, Y. Zhai, Y. Cui et al., “MDM2 promoter SNP309 is associated with risk of occurrence and advanced lymph node metastasis of nasopharyngeal carcinoma in Chinese population,” Clinical Cancer Research, vol. 13, no. 9, pp. 2627–2633, 2007. View at: Publisher Site | Google Scholar
  59. M.-Z. Zheng, H.-D. Qin, X.-J. Yu et al., “Haplotype of gene Nedd4 binding protein 2 associated with sporadic nasopharyngeal carcinoma in the Southern Chinese population,” Journal of Translational Medicine, vol. 5, p. 36, 2007. View at: Publisher Site | Google Scholar
  60. N. Hu, C. Wang, Y. Hu et al., “Genome-wide association study in esophageal cancer using GeneChip mapping 10K array,” Cancer Research, vol. 65, no. 7, pp. 2542–2546, 2005. View at: Publisher Site | Google Scholar
  61. N. A. Ellis, T. Kirchhoff, N. Mitra et al., “Localization of breast cancer susceptibility loci by genome-wide SNP linkage disequilibrium mapping,” Genetic Epidemiology, vol. 30, no. 1, pp. 48–61, 2006. View at: Publisher Site | Google Scholar
  62. Wellcome Trust Case Control Consortium, “Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls,” Nature, vol. 447, no. 7145, pp. 661–678, 2007. View at: Publisher Site | Google Scholar
  63. P. C. Nowell and D. A. Hungerford, “Chromosome studies on normal and leukemic human leukocytes,” Journal of the National Cancer Institute, vol. 25, pp. 85–109, 1960. View at: Google Scholar
  64. T. Liehr, A. Heller, H. Starke, and U. Claussen, “FISH banding methods: applications in research and diagnostics,” Expert Review of Molecular Diagnostics, vol. 2, no. 3, pp. 217–225, 2002. View at: Publisher Site | Google Scholar
  65. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001. View at: Publisher Site | Google Scholar
  66. J. C. Venter, M. D. Adams, E. W. Myers et al., “The sequence of the human genome,” Science, vol. 291, no. 5507, pp. 1304–1351, 2001. View at: Publisher Site | Google Scholar
  67. C. Schwaenen, M. Nessling, S. Wessendorf et al., “Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 4, pp. 1039–1044, 2004. View at: Publisher Site | Google Scholar
  68. P. L. Paris, A. Andaya, J. Fridlyand et al., “Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors,” Human Molecular Genetics, vol. 13, no. 13, pp. 1303–1313, 2004. View at: Publisher Site | Google Scholar
  69. G. Callagy, P. Pharoah, S.-F. Chin et al., “Identification and validation of prognostic markers in breast cancer with the complementary use of array-CGH and tissue microarrays,” Journal of Pathology, vol. 205, no. 3, pp. 388–396, 2005. View at: Publisher Site | Google Scholar
  70. M. M. Weiss, E. J. Kuipers, C. Postma et al., “Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival,” Cellular Oncology, vol. 26, no. 5-6, pp. 307–317, 2004. View at: Google Scholar
  71. M. P. Rosin, X. Cheng, C. Poh et al., “Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia,” Clinical Cancer Research, vol. 6, no. 2, pp. 357–362, 2000. View at: Google Scholar
  72. J. A. Martinez-Climent, A. A. Alizadeh, R. Segraves et al., “Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations,” Blood, vol. 101, no. 8, pp. 3109–3117, 2003. View at: Publisher Site | Google Scholar
  73. F. Rubio-Moscardo, J. Climent, R. Siebert et al., “Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome,” Blood, vol. 105, no. 11, pp. 4445–4454, 2005. View at: Publisher Site | Google Scholar
  74. W. Yan, L. Song, W. Wei, A. Li, J. Liu, and Y. Fang, “Chromosomal abnormalities associated with neck nodal metastasis in nasopharyngeal carcinoma,” Tumor Biology, vol. 26, no. 6, pp. 306–312, 2005. View at: Publisher Site | Google Scholar
  75. A. Kallioniemi, O. P. Kallioniemi, D. Sudar et al., “Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors,” Science, vol. 258, no. 5083, pp. 818–821, 1992. View at: Publisher Site | Google Scholar
  76. D. Pinkel and D. G. Albertson, “Array comparative genomic hybridization and its applications in cancer,” Nature Genetics, vol. 37, no. 6, pp. S11–S17, 2005. View at: Publisher Site | Google Scholar
  77. D. Pinkel and D. G. Albertson, “Comparative genomic hybridization,” Annual Review of Genomics and Human Genetics, vol. 6, pp. 331–354, 2005. View at: Publisher Site | Google Scholar
  78. Y.-J. Chen, J.-Y. Ko, P.-J. Chen et al., “Chromosomal aberrations in nasopharyngeal carcinoma analyzed by comparative genomic hybridization,” Genes Chromosomes and Cancer, vol. 25, no. 2, pp. 169–175, 1999. View at: Publisher Site | Google Scholar
  79. A. B.-Y. Hui, K.-W. Lo, S.-F. Leung et al., “Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridisation,” International Journal of Cancer, vol. 82, no. 4, pp. 498–503, 1999. View at: Publisher Site | Google Scholar
  80. Y. Fang, X.-Y. Guan, Y. Guo et al., “Analysis of genetic alterations in primary nasopharyngeal carcinoma by comparative genomic hybridization,” Genes Chromosomes and Cancer, vol. 30, no. 3, pp. 254–260, 2001. View at: Publisher Site | Google Scholar
  81. G. Chien, P. W. Yuen, D. Kwong, and Y. L. Kwong, “Comparative genomic hybridization analysis of nasopharygeal carcinoma: consistent patterns of genetic aberrations and clinicopathological correlations,” Cancer Genetics and Cytogenetics, vol. 126, no. 1, pp. 63–67, 2001. View at: Publisher Site | Google Scholar
  82. X. Li, E. Wang, Y.-D. Zhao et al., “Chromosomal imbalances in nasopharyngeal carcinoma: a meta-analysis of comparative genomic hybridization results,” Journal of Translational Medicine, vol. 4, p. 4, 2006. View at: Publisher Site | Google Scholar
  83. D. Pinkel, R. Segraves, D. Sudar et al., “High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays,” Nature Genetics, vol. 20, no. 2, pp. 207–211, 1998. View at: Publisher Site | Google Scholar
  84. A. S. Ishkanian, C. A. Malloff, S. K. Watson et al., “A tiling resolution DNA microarray with complete coverage of the human genome,” Nature Genetics, vol. 36, no. 3, pp. 299–303, 2004. View at: Publisher Site | Google Scholar
  85. A. B. Hui, K. W. Lo, P. M. Teo, K. F. To, and D. P. Huang, “Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization,” International Journal of Oncology, vol. 20, no. 3, pp. 467–473, 2002. View at: Google Scholar
  86. K. K. Mantripragada, P. G. Buckley, T. Diaz De Ståhl, and J. P. Dumanski, “Genomic microarrays in the spotlight,” Trends in Genetics, vol. 20, no. 2, pp. 87–94, 2004. View at: Publisher Site | Google Scholar
  87. J. R. Pollack, C. M. Perou, A. A. Alizadeh et al., “Genome-wide analysis of DNA copy-number changes using cDNA microarrays,” Nature Genetics, vol. 23, no. 1, pp. 41–46, 1999. View at: Publisher Site | Google Scholar
  88. X. Zhou, R. C. K. Jordan, S. Mok, M. J. Birrer, and D. T. W. Wong, “DNA copy number abnormality of oral squamous cell carcinoma detected with cDNA array-based comparative genomic hybridization,” Cancer Genetics and Cytogenetics, vol. 151, no. 1, pp. 90–92, 2004. View at: Publisher Site | Google Scholar
  89. C. Brennan, Y. Zhang, C. Leo et al., “High-resolution global profiling of genomic alterations with long oligonucleotide microarray,” Cancer Research, vol. 64, no. 14, pp. 4744–4748, 2004. View at: Publisher Site | Google Scholar
  90. R. Lucito, J. Healy, J. Alexander et al., “Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation,” Genome Research, vol. 13, no. 10, pp. 2291–2305, 2003. View at: Publisher Site | Google Scholar
  91. G. R. Bignell, J. Huang, J. Greshock et al., “High-resolution analysis of DNA copy number using oligonucleotide microarrays,” Genome Research, vol. 14, no. 2, pp. 287–295, 2004. View at: Publisher Site | Google Scholar
  92. X. Zhao, C. Li, J. G. Paez et al., “An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays,” Cancer Research, vol. 64, no. 9, pp. 3060–3071, 2004. View at: Publisher Site | Google Scholar
  93. X. Zhou, S. C. Mok, Z. Chen, Y. Li, and D. T. W. Wong, “Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10 K SNP mapping array,” Human Genetics, vol. 115, no. 4, pp. 327–330, 2004. View at: Publisher Site | Google Scholar
  94. X. Zhao, B. A. Weir, T. LaFramboise et al., “Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis,” Cancer Research, vol. 65, no. 13, pp. 5561–5570, 2005. View at: Publisher Site | Google Scholar
  95. J. J. Davies, I. M. Wilson, and W. L. Lam, “Array CGH technologies and their applications to cancer genomes,” Chromosome Research, vol. 13, no. 3, pp. 237–248, 2005. View at: Publisher Site | Google Scholar
  96. A. G. Knudson Jr., “Mutation and cancer: statistical study of retinoblastoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 68, no. 4, pp. 820–823, 1971. View at: Publisher Site | Google Scholar
  97. A. G. Knudson, “Hereditary cancer: two hits revisited,” Journal of Cancer Research and Clinical Oncology, vol. 122, no. 3, pp. 135–140, 1996. View at: Publisher Site | Google Scholar
  98. B. Vogelstein, E. R. Fearon, S. E. Kern et al., “Allelotype of colorectal carcinomas,” Science, vol. 244, no. 4901, pp. 207–211, 1989. View at: Publisher Site | Google Scholar
  99. A. Mutirangura, C. Tanunyutthawongese, W. Pornthanakasem et al., “Genomic alterations in nasopharyngeal carcinoma: loss of heterozygosity and Epstein-Barr virus infection,” British Journal of Cancer, vol. 76, no. 6, pp. 770–776, 1997. View at: Google Scholar
  100. J. Y. Shao, H. Y. Wang, X. M. Huang et al., “Genome-wide allelotype analysis of sporadic primary nasopharyngeal carcinoma from Southern China,” International Journal of Oncology, vol. 17, no. 6, pp. 1267–1275, 2000. View at: Google Scholar
  101. J.-Y. Shao, X.-M. Huang, X.-J. Yu et al., “Loss of heterozygosity and its correlation with clinical outcome and Epstein-Barr virus infection in nasopharyngeal carcinoma,” Anticancer Research, vol. 21, no. 4 B, pp. 3021–3029, 2001. View at: Google Scholar
  102. D. G. Wang, J.-B. Fan, C.-J. Siao et al., “Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome,” Science, vol. 280, no. 5366, pp. 1077–1082, 1998. View at: Publisher Site | Google Scholar
  103. K. Lindblad-Toh, D. M. Tanenbaum, M. J. Daly et al., “Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays,” Nature Biotechnology, vol. 18, no. 9, pp. 1001–1005, 2000. View at: Publisher Site | Google Scholar
  104. P. A. Jänne, C. Li, X. Zhao et al., “High-resolution single-nucleotide polymorphism array and clustering analysis of loss of heterozygosity in human lung cancer cell lines,” Oncogene, vol. 23, no. 15, pp. 2716–2726, 2004. View at: Google Scholar
  105. Z. C. Wang, M. Lin, L.-J. Wei et al., “Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers,” Cancer Research, vol. 64, no. 1, pp. 64–71, 2004. View at: Publisher Site | Google Scholar
  106. M. O. Hoque, C.-C. R. Lee, P. Cairns, M. Schoenberg, and D. Sidransky, “Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis,” Cancer Research, vol. 63, no. 9, pp. 2216–2222, 2003. View at: Google Scholar
  107. M. E. Lieberfarb, M. Lin, M. Lechpammer et al., “Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP,” Cancer Research, vol. 63, no. 16, pp. 4781–4785, 2003. View at: Google Scholar
  108. X. Zhou, C. Li, S. C. Mok, Z. Chen, and D. T. W. Wong, “Whole genome loss of heterozygosity profiling on oral squamous cell carcinoma by high-density single nucleotide polymorphic allele (SNP) array,” Cancer Genetics and Cytogenetics, vol. 151, no. 1, pp. 82–84, 2004. View at: Publisher Site | Google Scholar
  109. T. Caspersson, L. Zech, E. J. Modest, G. E. Foley, U. Wagh, and E. Simonsson, “Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes,” Experimental Cell Research, vol. 58, no. 1, pp. 128–140, 1969. View at: Publisher Site | Google Scholar
  110. T. Caspersson, L. Zech, E. J. Modest, G. E. Foley, U. Wagh, and E. Simonsson, “DNA-binding fluorochromes for the study of the organization of the metaphase nucleus,” Experimental Cell Research, vol. 58, no. 1, pp. 141–152, 1969. View at: Publisher Site | Google Scholar
  111. M. Kristensen, H. H. Quek, C. T. Chew, and S. H. Chan, “A cytogenetic study of 74 nasopharyngeal carcinoma biopsies,” Annals of the Academy of Medicine Singapore, vol. 20, no. 5, pp. 597–600, 1991. View at: Google Scholar
  112. F. Mitelman, E. Mark Vendel, A. Mineur, B. Giovanella, and G. Klein, “A 3q+ marker chromosome in EBV-carrying nasopharyngeal carcinomas,” International Journal of Cancer, vol. 32, no. 6, pp. 651–655, 1983. View at: Google Scholar
  113. S. Zhang, Y. Wu, Y. Zeng, L. Zech, and G. Klein, “Cytogenetic studies on an epithelioid cell line derived from nasopharyngeal carcinoma,” Hereditas, vol. 97, no. 1, pp. 23–28, 1982. View at: Google Scholar
  114. Y.-S. Chang, S.-Y. Lin, P.-F. Lee, T. Durff, H.-C. Chung, and M.-S. Tsai, “Establishment and characterization of a tumor cell line from human nasopharyngeal carcinoma tissue,” Cancer Research, vol. 49, no. 23, pp. 6752–6757, 1989. View at: Google Scholar
  115. D. P. Huang, J. H. C. Ho, W. K. Chan, W. H. Lau, and M. Lui, “Cytogenetics of undifferentiated nasopharyngeal carcinoma xenografts from Southern Chinese,” International Journal of Cancer, vol. 43, no. 5, pp. 936–939, 1989. View at: Publisher Site | Google Scholar
  116. A. Bernheim, G. Rousselet, L. Massaad, P. Busson, and T. Tursz, “Cytogenetic studies in three xenografted nasopharyngeal carcinomas,” Cancer Genetics and Cytogenetics, vol. 66, no. 1, pp. 11–15, 1993. View at: Publisher Site | Google Scholar
  117. C.-T. Lin, W.-Y. Chan, W. Chen et al., “Characterization of seven newly established nasopharyngeal carcinoma cell lines,” Laboratory Investigation, vol. 68, no. 6, pp. 716–727, 1993. View at: Google Scholar
  118. A. B. Y. Hui, S.-T. Cheung, Y. Fong, K.-W. Lo, and D. P. Huang, “Characterization of a new EBV-associated nasopharyngeal carcinoma cell line,” Cancer Genetics and Cytogenetics, vol. 101, no. 2, pp. 83–88, 1998. View at: Publisher Site | Google Scholar
  119. K.-W. Lo, P. W. S. D. Huang, and C. K. J. Lee, “Genetic changes in nasopharyngeal carcinoma,” Chinese Medical Journal, vol. 110, no. 7, pp. 548–549, 1997. View at: Google Scholar
  120. K.-W. Lo and D. P. Huang, “Genetic and epigenetic changes in nasopharyngeal carcinoma,” Seminars in Cancer Biology, vol. 12, no. 6, pp. 451–462, 2002. View at: Publisher Site | Google Scholar
  121. P. A. Futreal, L. Coin, M. Marshall et al., “A census of human cancer genes,” Nature Reviews Cancer, vol. 4, no. 3, pp. 177–183, 2004. View at: Publisher Site | Google Scholar
  122. M. Waghray, R. S. Parhar, K. Taibah, and S. Al-Sedairy, “Rearrangements of chromosome arm 3q in poorly differentiated nasopharyngeal carcinoma,” Genes Chromosomes and Cancer, vol. 4, no. 4, pp. 326–330, 1992. View at: Publisher Site | Google Scholar
  123. C.-S. Fan, N. Wong, S.-F. Leung et al., “Frequent c-myc and Int-2 overrepresentations in nasopharyngeal carcinoma,” Human Pathology, vol. 31, no. 2, pp. 169–178, 2000. View at: Publisher Site | Google Scholar
  124. E. Schröck, S. Du Manoir, T. Veldman et al., “Multicolor spectral karyotyping of human chromosomes,” Science, vol. 273, no. 5274, pp. 494–497, 1996. View at: Google Scholar
  125. M. Liyanage, A. Coleman, S. du Manoir et al., “Multicolour spectral karyotyping of mouse chromosomes,” Nature Genetics, vol. 14, no. 3, pp. 312–315, 1996. View at: Publisher Site | Google Scholar
  126. M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nature Genetics, vol. 12, no. 4, pp. 368–375, 1996. View at: Publisher Site | Google Scholar
  127. N. Wong, A. B. Y. Hui, B. Fan et al., “Molecular cytogenetic characterization of nasopharyngeal carcinoma cell lines and xenografts by comparative genomic hybridization and spectral karyotyping,” Cancer Genetics and Cytogenetics, vol. 140, no. 2, pp. 124–132, 2003. View at: Publisher Site | Google Scholar
  128. Y. H. Ma, L. J. Zhang, X. Q. Wang, M. S. Zeng, B. Li, and Y. X. Zeng, “Rapid idenfication of differentially expressed genes in subtractive library of nasopharyngeal carcinoma using cDNA chip,” Acta Scientiarum Naturalium Universitatis Sunyatseni, vol. 39, no. 6A, pp. 192–196, 2000. View at: Google Scholar
  129. L. Xie, L. Xu, Z. He et al., “Identification of differentially expressed genes in nasopharyngeal carcinoma by means of the atlas human cancer cDNA expression array,” Journal of Cancer Research and Clinical Oncology, vol. 126, no. 7, pp. 400–406, 2000. View at: Publisher Site | Google Scholar
  130. L. J. Zhang, Y. Fang, Y. H. Ma et al., “Gene expression profiling in nasopharyngeal carcinoma determined by high density cDNA microarray,” Ai Zheng, vol. 21, no. 6, pp. 588–592, 2002. View at: Google Scholar
  131. Z. Zeng, Y. Zhou, W. Xiong et al., “Analysis of gene expression identifies candidate molecular markers in nasopharyngeal carcinoma using microdissection and cDNA microarray,” Journal of Cancer Research and Clinical Oncology, vol. 133, no. 2, pp. 71–81, 2007. View at: Publisher Site | Google Scholar
  132. Z.-Y. Zeng, Y.-H. Zhou, W.-L. Zhang et al., “Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway,” Human Pathology, vol. 38, no. 1, pp. 120–133, 2007. View at: Publisher Site | Google Scholar
  133. F. L. Sung, E. P. Hui, Q. Tao et al., “Genome-wide expression analysis using microarray identified complex signaling pathways modulated by hypoxia in nasopharyngeal carcinoma,” Cancer Letters, vol. 253, no. 1, pp. 74–88, 2007. View at: Publisher Site | Google Scholar
  134. Y.-C. G. Lee, Y.-C. Hwang, K.-C. Chen et al., “Effect of Epstein-Barr virus infection on global gene expression in nasopharyngeal carcinoma,” Functional and Integrative Genomics, vol. 7, no. 1, pp. 79–93, 2007. View at: Publisher Site | Google Scholar
  135. S. Sengupta, J. A. Den Boon, I.-H. Chen et al., “Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma,” Cancer Research, vol. 66, no. 16, pp. 7999–8006, 2006. View at: Publisher Site | Google Scholar
  136. R. A. Soo, J. Wu, A. Aggarwal et al., “Celecoxib reduces microvessel density in patients treated with nasopharyngeal carcinoma and induces changes in gene expression,” Annals of Oncology, vol. 17, no. 11, pp. 1625–1630, 2006. View at: Publisher Site | Google Scholar
  137. X. Zhou, T. Yu, S. W. Cole, and D. T. W. Wong, “Advancement in characterization of genomic alterations for improved diagnosis, treatment and prognostics in cancer,” Expert Review of Molecular Diagnostics, vol. 6, no. 1, pp. 39–50, 2006. View at: Publisher Site | Google Scholar
  138. H. M. Li, C. Man, Y. Jin et al., “Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase,” International Journal of Cancer, vol. 119, no. 7, pp. 1567–1576, 2006. View at: Publisher Site | Google Scholar
  139. J. J. Crawley and K. A. Furge, “Identification of frequent cytogenetic aberrations in hepatocellular carcinoma using gene-expression microarray data,” Genome Biology, vol. 3, no. 12, p. RESEARCH0075, 2002. View at: Publisher Site | Google Scholar
  140. X. Zhou, S. W. Cole, S. Hu, and D. T. W. Wong, “Detection of DNA copy number abnormality by microarray expression analysis,” Human Genetics, vol. 114, no. 5, pp. 464–467, 2004. View at: Publisher Site | Google Scholar
  141. X. Zhou, S. W. Cole, N. Rao et al., “Identification of discrete chromosomal deletion by binary recursive partitioning of microarray differential expression data,” Journal of Medical Genetics, vol. 42, no. 5, pp. 416–419, 2005. View at: Publisher Site | Google Scholar
  142. C. L. Myers, M. J. Dunham, S. Y. Kung, and O. G. Troyanskaya, “Accurate detection of aneuploidies in array CGH and gene expression microarray data,” Bioinformatics, vol. 20, no. 18, pp. 3533–3543, 2004. View at: Publisher Site | Google Scholar
  143. J. R. Pollack, T. Sørlie, C. M. Perou et al., “Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12963–12968, 2002. View at: Publisher Site | Google Scholar
  144. M. Wolf, S. Mousses, S. Hautaniemi et al., “High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression,” Neoplasia, vol. 6, no. 3, pp. 240–247, 2004. View at: Publisher Site | Google Scholar
  145. P. Kauraniemi, T. Kuukasjärvi, G. Sauter, and A. Kallioniemi, “Amplification of a 280-kilobase core region at the ERBB2 locus leads to activation of two hypothetical proteins in breast cancer,” American Journal of Pathology, vol. 163, no. 5, pp. 1979–1984, 2003. View at: Google Scholar
  146. J. L. Phillips, S. W. Hayward, Y. Wang et al., “The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis,” Cancer Research, vol. 61, no. 22, pp. 8143–8149, 2001. View at: Google Scholar
  147. K. Virtaneva, F. A. Wright, S. M. Tanner et al., “Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1124–1129, 2001. View at: Publisher Site | Google Scholar

Copyright © 2007 Xiaofeng Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views270
Downloads859
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.