Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 678761, 5 pages
http://dx.doi.org/10.1155/2012/678761
Research Article

TnpPred: A Web Service for the Robust Prediction of Prokaryotic Transposases

1Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida Y Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
2Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile

Received 1 June 2012; Revised 20 August 2012; Accepted 18 September 2012

Academic Editor: G. Pesole

Copyright © 2012 Gonzalo Riadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Touchon and E. P. C. Rocha, “Causes of insertion sequences abundance in prokaryotic genomes,” Molecular Biology and Evolution, vol. 24, no. 4, pp. 969–981, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Siguier, J. Filée, and M. Chandler, “Insertion sequences in prokaryotic genomes,” Current Opinion in Microbiology, vol. 9, no. 5, pp. 526–531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. K. Aziz, M. Breitbart, and R. A. Edwards, “Transposases are the most abundant, most ubiquitous genes in nature,” Nucleic Acids Research, vol. 38, no. 13, Article ID gkq140, pp. 4207–4217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. De la Cruz and J. Davies, “Horizontal gene transfer and the origin of species: lessons from bacteria,” Trends in Microbiology, vol. 8, no. 3, pp. 128–133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Siguier, J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler, “ISfinder: the reference centre for bacterial insertion sequences,” Nucleic Acids Research, vol. 34, pp. D32–D36, 2006. View at Google Scholar · View at Scopus
  6. J. Mahillon and M. Chandler, Insertion Sequences Revisited. In Mobile DNA II, ASM Press, Washington, DC, USA, 2002.
  7. A. M. Varani, P. Siguier, E. Gourbeyre, V. Charneau, and M. Chandler, “ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes,” Genome Biology, vol. 12, no. 3, article R30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. S. F. Altschul, J. C. Wootton, E. M. Gertz et al., “Protein database searches using compositionally adjusted substitution matrices,” FEBS Journal, vol. 272, no. 20, pp. 5101–5109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Wagner, C. Lewis, and M. Bichsel, “A survey of bacterial insertion sequences using IScan,” Nucleic Acids Research, vol. 35, no. 16, pp. 5284–5293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Madera and J. Gough, “A comparison of profile hidden Markov model procedures for remote homology detection,” Nucleic Acids Research, vol. 30, no. 19, pp. 4321–4328, 2002. View at Google Scholar · View at Scopus
  12. R. D. Finn, J. Mistry, and J. Tate, “The Pfam protein families database,” Nucleic Acids Research, vol. 38, pp. D211–D222, 2010. View at Google Scholar
  13. R. Leplae, G. Lima-Mendez, and A. Toussaint, “ACLAME: a CLAssification of mobile genetic elements, update 2010,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp938, pp. D57–D61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Wilson, M. Madera, C. Vogel, C. Chothia, and J. Gough, “The SUPERFAMILY database in 2007: families and functions,” Nucleic Acids Research, vol. 35, no. 1, pp. D308–D313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Andreeva, D. Howorth, J. M. Chandonia et al., “Data growth and its impact on the SCOP database: new developments,” Nucleic Acids Research, vol. 36, no. 1, pp. D419–D425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. D. Pruitt, T. Tatusova, W. Klimke, and D. R. Maglott, “NCBI reference sequences: current status, policy and new initiatives,” Nucleic Acids Research, vol. 37, no. 1, pp. D32–D36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Chenna, H. Sugawara, T. Koike et al., “Multiple sequence alignment with the Clustal series of programs,” Nucleic Acids Research, vol. 31, no. 13, pp. 3497–3500, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Durbin, S. R. Eddy, A. Krogh, and G. J. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, 1998.
  19. Upgrading to TLS Within HTTP/1.1, http://tools.ietf.org/html/rfc2817.
  20. The text/css Media Type, http://tools.ietf.org/html/rfc2318.
  21. T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Boeckmann, A. Bairoch, R. Apweiler et al., “The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003,” Nucleic Acids Research, vol. 31, no. 1, pp. 365–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Apweiler, M. J. Martin, C. O'Donovan et al., “Ongoing and future developments at the Universal Protein Resource,” Nucleic Acids Research, vol. 39, supplement 1, pp. D214–D219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. D. Hooper, K. Mavromatis, and N. C. Kyrpides, “Microbial co-habitation and lateral gene transfer: what transposases can tell us,” Genome Biology, vol. 10, no. 4, article R45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Schmitz-Esser, T. Penz, A. Spang, and M. Horn, “A bacterial genome in transition—an exceptional enrichment of IS elements but lack of evidence for recent transposition in the symbiont Amoebophilus asiaticus,” BMC Evolutionary Biology, vol. 11, no. 1, article 270, 2011. View at Publisher · View at Google Scholar · View at Scopus