Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2013 (2013), Article ID 124612, 8 pages
http://dx.doi.org/10.1155/2013/124612
Research Article

XRCC7 rs#7003908 Polymorphism and Helicobacter pylori Infection-Related Gastric Antrum Adenocarcinoma

1Department of Medicine, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
2Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
3Department of Liver Surgery, The Affiliated Ren Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

Received 26 July 2013; Accepted 29 September 2013

Academic Editor: Elena Pasyukova

Copyright © 2013 Chao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA-Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA-Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar · View at Scopus
  3. B. C. Y. Wong, S. K. Lam, C. K. Ching et al., “Differential helicobacter pylori infection rates in two contrasting gastric cancer risk regions of South China,” Journal of Gastroenterology and Hepatology, vol. 14, no. 2, pp. 120–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Cervantes, E. Rodríguez Braun, A. Pérez Fidalgo, and I. Chirivella González, “Molecular biology of gastric cancer,” Clinical & Translational Oncology, vol. 9, no. 4, pp. 208–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Ali, Y. Deng, and C. Ma, “Progress of research in gastric cancer,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 11, pp. 8241–8248, 2012. View at Google Scholar
  6. O. Handa, Y. Naito, and T. Yoshikawa, “CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling,” Biochemical Pharmacology, vol. 73, no. 11, pp. 1697–1702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Murata-Kamiya, “Pathophysiological functions of the CagA oncoprotein during infection by Helicobacter pylori,” Microbes and Infection, vol. 13, no. 10, pp. 799–807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Izzotti, S. De Flora, C. Cartiglia et al., “Interplay between Helicobacter pylori and host gene polymorphisms in inducing oxidative DNA damage in the gastric mucosa,” Carcinogenesis, vol. 28, no. 4, pp. 892–898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. S. P. Ladeira, R. C. A. Bueno, B. F. Dos Santos et al., “Relationship among oxidative DNA damage, gastric mucosal density and the relevance of cagA, vacA and iceA genotypes of Helicobacter pylori,” Digestive Diseases and Sciences, vol. 53, no. 1, pp. 248–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. I. M. Toller, K. J. Neelsen, M. Steger et al., “Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 36, pp. 14944–14949, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Pardo, B. Gómez-González, and A. Aguilera, “DNA double-strand break repair: How to fix a broken relationship,” Cellular and Molecular Life Sciences, vol. 66, no. 6, pp. 1039–1056, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. T. Natarajan and F. Palitti, “DNA repair and chromosomal alterations,” Mutation Research, vol. 657, no. 1, pp. 3–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. P. C. Chen, M. Li, and A. Asaithamby, “New insights into the roles of ATM and DNA-PKcs in the cellular response to oxidative stress,” Cancer Letters, vol. 327, no. 1-2, pp. 103–110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. E. J. Gapud and B. P. Sleckman, “Unique and redundant functions of ATM and DNA-PKcs during V(D)J recombination,” Cell Cycle, vol. 10, no. 12, pp. 1928–1935, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Saadat, R. Vakili-Ghartavol, M. Farvardin-Jahromi, and M. Saadat, “Association between exudative age-related macular degeneration and the G6721T polymorphism of XRCC7 in outdoor subjects,” Korean Journal of Ophthalmology, vol. 26, no. 6, pp. 423–427, 2012. View at Google Scholar
  16. M. Rahimi, S. Fayaz, A. Fard-Esfahani, M. H. Modarressi, S. M. Akrami, and P. Fard-Esfahani, “The role of Ile3434Thr XRCC7 gene polymorphism in differentiated thyroid cancer risk in an Iranian population,” Iranian Biomedical Journal, vol. 16, no. 4, pp. 218–222, 2012. View at Google Scholar
  17. X. D. Long, J. G. Yao, Y. Z. Huang et al., “DNA repair gene XRCC7 polymorphisms (rs#7003908 and rs#10109984) and hepatocellular carcinoma related to AFB1 exposure among Guangxi population, China,” Hepatology Research, vol. 41, no. 11, pp. 1085–1093, 2011. View at Google Scholar
  18. L. Zhao, X.-D. Long, J.-G. Yao et al., “Genetic polymorphism of XRCC3 codon 241 and Helicobacter pylori infection-related gastric antrum adenocarcinoma in Guangxi Population, China: a hospital-based case-control study,” Cancer Epidemiology, vol. 35, no. 6, pp. 564–568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. X.-D. Long, Y. Ma, Y.-Z. Huang et al., “Genetic polymorphisms in DNA repair genes XPC, XPD, and XRCC4, and susceptibility to helicobacter pylori infection-related gastric antrum adenocarcinoma in Guangxi population, China,” Molecular Carcinogenesis, vol. 49, no. 6, pp. 611–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. X. D. Long, D. Zhao, C. Wang et al., “Genetic polymorphisms in DNA repair genes XRCC4 and XRCC5 and aflatoxin B1-related hepatocellular carcinoma,” Epidemiology, vol. 24, no. 5, pp. 671–681, 2013. View at Google Scholar
  21. X. D. Long, J. G. Yao, Z. Zeng et al., “Polymorphisms in the coding region of X-ray repair complementing group 4 and aflatoxin B1-related hepatocellular carcinoma,” Hepatology, vol. 58, no. 1, pp. 171–181, 2013. View at Google Scholar
  22. X.-D. Long, Y. Ma, Y.-F. Zhou, A.-M. Ma, and G.-H. Fu, “Polymorphism in xeroderma pigmentosum complementation group C codon 939 and aflatoxin B1-related hepatocellular carcinoma in the Guangxi population,” Hepatology, vol. 52, no. 4, pp. 1301–1309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Vauhkonen, H. Vauhkonen, and P. Sipponen, “Pathology and molecular biology of gastric cancer,” Best Practice & Research Clinical Gastroenterology, vol. 20, no. 4, pp. 651–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Parsonnet, G. D. Friedman, N. Orentreich, and H. Vogelman, “Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection,” Gut, vol. 40, no. 3, pp. 297–301, 1997. View at Google Scholar · View at Scopus
  25. C. de Martel, D. Forman, and M. Plummer, “Gastric cancer: epidemiology and risk factors,” Gastroenterology Clinics of North America, vol. 42, no. 2, pp. 219–240, 2013. View at Google Scholar
  26. Y. Hong, G. Wang, and R. J. Maier, “A Helicobacter hepaticus catalase mutant is hypersensitive to oxidative stress and suffers increased DNA damage,” Journal of Medical Microbiology, vol. 56, no. 4, pp. 557–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Farinati, R. Cardin, M. Bortolami et al., “Oxidative DNA damage in gastric cancer: CagA status and OGG1 gene polymorphism,” International Journal of Cancer, vol. 123, no. 1, pp. 51–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. O. H. Ambur, T. Davidsen, S. A. Frye et al., “Genome dynamics in major bacterial pathogens,” FEMS Microbiology Reviews, vol. 33, no. 3, pp. 453–470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. D. Sipley, J. C. Menninger, K. O. Hartley, D. C. Ward, S. P. Jackson, and C. W. Anderson, “Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7515–7519, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Errami, W. J. I. Overkamp, D. M. He et al., “A new X-ray sensitive CHO cell mutant of ionizing radiation group 7, XR- C2, that is defective in DSB repair but has only a mild defect in V(D)J recombination,” Mutation Research, vol. 461, no. 1, pp. 59–69, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Zhang, X. H. Wu, and Y. Gan, “Current evidence on the relationship between three polymorphisms in the XRCC7 gene and cancer risk,” Molecular Biology Reports, vol. 40, no. 1, pp. 81–86, 2013. View at Google Scholar
  32. R. K. Mandal, R. Kapoor, and R. D. Mittal, “Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from North Indian population,” DNA and Cell Biology, vol. 29, no. 11, pp. 669–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S.-Y. Wang, L. Peng, C.-P. Li et al., “Genetic variants of the XRCC7 gene involved in DNA repair and risk of human bladder cancer,” International Journal of Urology, vol. 15, no. 6, pp. 534–539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H. S. Lee, G. Choe, K. U. Park et al., “Altered expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) during gastric carcinogenesis and its clinical implications on gastric cancer,” International Journal of Oncology, vol. 31, no. 4, pp. 859–866, 2007. View at Google Scholar · View at Scopus
  35. C. Montecucco and R. Rappuoli, “Living dangerously: how helicobacter pylori survives in the human stomach,” Nature Reviews Molecular Cell Biology, vol. 2, no. 6, pp. 457–466, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Xia, X. Y. Huang, F. Xue et al., “Genetic polymorphisms of DNA repair genes and DNA repair capacity related to aflatoxin b1 (AFB1)-induced DNA damages,” in New Research Directions in DNA Repair, C. Chen, Ed., pp. 377–412, InTech, Rijeka, Croatia, 1st edition, 2013. View at Google Scholar
  37. D. M. Wilson III and L. H. Thompson, “Life without DNA repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 12754–12757, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Yasui, K. Sentani, J. Motoshita, and H. Nakayama, “Molecular pathobiology of gastric cancer,” Scandinavian Journal of Surgery, vol. 95, no. 4, pp. 225–231, 2006. View at Google Scholar · View at Scopus