Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2013, Article ID 173616, 6 pages
http://dx.doi.org/10.1155/2013/173616
Research Article

Comparative Analysis of Context-Dependent Mutagenesis in Humans and Fruit Flies

1Department of Bioengineering and Bioinformatics, Moscow State University, Vorbyevy Gory 1-73, Moscow 119992, Russia
2Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny Pereulok 19-1, Moscow 127994, Russia
3Department of Mathematical Methods in Biology, Belozersky Institute, Moscow State University, Vorbyevy Gory 1-40, Moscow 119991, Russia
4Department of Mathematics, Scientific-Research Institute for System Studies, Russian Academy of Sciences, Nakhimovskii Prospekt 36-1, Moscow 117218, Russia

Received 1 April 2013; Accepted 7 July 2013

Academic Editor: Dmitry Sherbakov

Copyright © 2013 Sofya A. Medvedeva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. F. Baer, M. M. Miyamoto, and D. R. Denver, “Mutation rate variation in multicellular eukaryotes: causes and consequences,” Nature Reviews Genetics, vol. 8, no. 8, pp. 619–631, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Kong, M. L. Frigge, G. Masson et al., “Rate of de novo mutations and the importance of father's age to disease risk,” Nature, vol. 488, no. 7412, pp. 471–475, 2012. View at Google Scholar
  3. D. N. Cooper and M. Krawczak, “Cytosine methylation and the fate of CpG dinucleotides in vertebrates genomes,” Human Genetics, vol. 83, no. 2, pp. 181–188, 1989. View at Google Scholar · View at Scopus
  4. N. D. Singh, P. F. Arndt, A. G. Clark, and C. F. Aquadro, “Strong evidence for lineage and sequence specificity of substitution rates and patterns in drosophila,” Molecular Biology and Evolution, vol. 26, no. 7, pp. 1591–1605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Lyko, B. H. Ramsahoye, and R. Jaenisch, “DNA methylation in Drosophila melanogaster,” Nature, vol. 408, no. 6812, pp. 538–540, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Arnheim and P. Calabrese, “Understanding what determines the frequency and pattern of human germline mutations,” Nature Reviews Genetics, vol. 10, no. 7, pp. 478–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Hodgkinson, E. Ladoukakis, and A. Eyre-Walker, “Cryptic variation in the human mutation rate,” PLoS Biology, vol. 7, no. 2, Article ID e1000027, 2009. View at Google Scholar · View at Scopus
  8. R. D. Blake, S. T. Hess, and J. Nicholson-Tuell, “The influence of nearest neighbors on the rate and pattern of spontaneous point mutations,” Journal of Molecular Evolution, vol. 34, no. 3, pp. 189–200, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. D. G. Hwang and P. Green, “Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 39, pp. 13994–14001, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Y. Panchin, S. I. Mitrofanov, A. V. Alexeevski, S. A. Spirin, and Y. V. Panchin, “New words in human mutagenesis,” BMC Bioinformatics, vol. 12, article 268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. M. Kuhn, D. Karolchik, A. S. Zweig et al., “The UCSC genome browser database: update 2009,” Nucleic Acids Research, vol. 37, no. 1, pp. D755–D761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. C. Cheng, D. S. Cahill, H. Kasai, S. Nishimura, and L. A. Loeb, “8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G → T and A → C substitutions,” Journal of Biological Chemistry, vol. 267, no. 1, pp. 166–172, 1992. View at Google Scholar · View at Scopus
  13. D. Wang, D. A. Kreutzer, and J. M. Essigmann, “Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions,” Mutation Research, vol. 400, no. 1-2, pp. 99–115, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Douki, D. Perdiz, P. Gróf et al., “Oxidation of guanine in cellular DNA by solar UV radiation: biological role,” Photochemistry and Photobiology, vol. 70, no. 2, pp. 184–190, 1999. View at Google Scholar · View at Scopus
  15. C. Dherin, M. Dizdaroglu, H. Doerflinger, S. Boiteux, and J. P. Radicella, “Repair of oxidative DNA damage in Drosophila melanogaster: identification and characterization of dOgg1, a second DNA glycosylase activity for 8-hydroxyguanine and formamidopyrimidines,” Nucleic Acids Research, vol. 28, no. 23, pp. 4583–4592, 2000. View at Google Scholar · View at Scopus
  16. P. L. Foster, E. Eisenstadt, and J. H. Miller, “Base substitution mutations induced by metabolically activated aflatoxin B1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 9, pp. 2695–2698, 1983. View at Google Scholar · View at Scopus
  17. Y. Trottier, W. I. Waithe, and A. Anderson, “Kinds of mutations induced by aflatoxin B1 in a shuttle vector replicating in human cells transiently expressing cytochrome P450IA2 cDNA,” Molecular Carcinogenesis, vol. 6, no. 2, pp. 140–147, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Matsuda, K. Bebenek, C. Masutani, I. B. Rogozin, F. Hanaoka, and T. A. Kunkel, “Error rate and specificity of human and murine DNA polymerase η,” Journal of Molecular Biology, vol. 312, no. 2, pp. 335–346, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Osada, H. Yamamoto, T. Nishihara, and M. Imagawa, “DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family,” Journal of Biological Chemistry, vol. 271, no. 7, pp. 3891–3896, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. S. I. Mitrofanov, A. Y. Panchin, S. A. Spirin, A. V. Alexeevski, and Y. V. Panchin, “Exclusive sequences of different genomes,” Journal of Bioinformatics and Computational Biology, vol. 8, no. 3, pp. 519–534, 2010. View at Publisher · View at Google Scholar · View at Scopus