Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2013 (2013), Article ID 235487, 5 pages
Research Article

Development of Transgenic Papaya through Agrobacterium-Mediated Transformation

1Centre for General Studies, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Agricultural Extension, Khamarbari, Farmgate, Dhaka 1215, Bangladesh
3Department of Horticulture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
4Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Received 11 February 2013; Revised 22 May 2013; Accepted 8 July 2013

Academic Editor: Brian Wigdahl

Copyright © 2013 Md. Abul Kalam Azad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and -glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.