Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2013 (2013), Article ID 257218, 9 pages
http://dx.doi.org/10.1155/2013/257218
Research Article

Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences

1Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
2Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
3Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN 55108, USA

Received 7 November 2012; Revised 18 March 2013; Accepted 20 March 2013

Academic Editor: Ancha Baranova

Copyright © 2013 Alessandra Traini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Spooner and A. Salas, “Structure, biosystematics, and genetic resources,” in Handbook of Potato Production, Improvement, and Post-Harvest Management, J. Gopal and S. M. Paul Khurana, Eds., pp. 1–39, Haworth's Press, Binghampton, NY, USA, 2006. View at Google Scholar
  2. J. E. Bradshaw, “Potato-breeding strategy,” in Potato Biology and Biotechnology: Advances and Perspectives, D. Vreugdenhil, Ed., pp. 157–177, Elsevier, Oxford, UK, 2007. View at Google Scholar
  3. J. Song, J. M. Bradeen, S. K. Naess et al., “Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9128–9133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Van Der Vossen, A. Sikkema, B. T. L. Hekkert et al., “An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato,” Plant Journal, vol. 36, no. 6, pp. 867–882, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. E. A. G. Van Der Vossen, J. Gros, A. Sikkema et al., “The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato,” Plant Journal, vol. 44, no. 2, pp. 208–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. H. Park, J. Gros, A. Sikkema et al., “The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato,” Molecular Plant-Microbe Interactions, vol. 18, no. 7, pp. 722–729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Oosumi, D. R. Rockhold, M. M. Maccree, K. L. Deahl, K. F. McCue, and W. R. Belknap, “Gene Rpi-bt1 from Solanum bulbocastanum confers resistance to late blight in transgenic potatoes,” American Journal of Potato Research, vol. 86, no. 6, pp. 456–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Carputo, T. Cardi, J. P. Palta, P. Sirianni, S. Vega, and L. Frusciante, “Tolerance to low temperatures and tuber soft rot in hybrids between Solanum commersonii and Solanum tuberosum obtained through manipulation of ploidy and endosperm balance number (EBN),” Plant Breeding, vol. 119, no. 2, pp. 127–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Carputo, R. Aversano, A. Barone et al., “Resistance to ralstonia solanacearum of sexual hybrids between Solanum commersonii and S. tuberosum,” American Journal of Potato Research, vol. 86, no. 3, pp. 196–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. Hawkes, The Potato: Evolution, Biodiversity and Genetic Resources, Smithsonian Institution Press, Washington, DC, USA, 1990.
  11. J. Sliwka, H. Jakuczun, M. Chmielarz et al., “A resistance gene against potato late blight originating from Solanum x michoacanum maps to potato chromosome VII,” Theoretical and Applied Genetics, vol. 124, no. 2, pp. 397–406, 2012. View at Google Scholar
  12. The Tomato Genome Consortium, “Genome sequence and analysis of the tuber crop potato,” Nature, vol. 475, no. 7355, pp. 189–195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. The Tomato Genome Consortium, “The tomato genome sequence provides insights into fleshy fruit evolution,” Nature, vol. 485, pp. 635–641, 2012. View at Google Scholar
  14. M. W. Bonierbale, R. L. Plaisted, and S. D. Tanksley, “RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato,” Genetics, vol. 120, no. 4, pp. 1095–1103, 1988. View at Google Scholar
  15. S. D. Tanksley, M. W. Ganal, J. P. Prince et al., “High density molecular linkage maps of the tomato and potato genomes,” Genetics, vol. 132, no. 4, pp. 1141–1160, 1992. View at Google Scholar · View at Scopus
  16. R. C. Grube, E. R. Radwanski, and M. Jahn, “Comparative genetics of disease resistance within the solanaceae,” Genetics, vol. 155, no. 2, pp. 873–887, 2000. View at Google Scholar · View at Scopus
  17. J. M. Bradeen, “Cloning of late blight resistance genes: strategies and progress,” in Genetics, Genomics and Breeding of Potato, J. M. Bradeen and C. Kole, Eds., pp. 153–183, CRC Press/Science Publishers, Enfield, NH, 2011. View at Google Scholar
  18. K. Mochida and K. Shinozaki, “Advances in omics and bioinformatics tools for systems analyses of plant functions,” Plant Cell Physiology, vol. 52, no. 12, pp. 2017–2038, 2011. View at Google Scholar
  19. M. L. Chiusano, N. D'Agostino, A. Traini et al., “ISOL" An Italian SOLAnaceae genomics resource,” BMC Bioinformatics, vol. 9, no. 2, article S7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Sanchez, Allelic mining for late blight resistance in wild Solanum species belonging to series Bulbocastana [M.S. thesis], Department of Plant Pathology, University of Minnesota, St. Paul, Minn, USA, 2005.
  21. M. Iorizzo, Uso di strumenti genomici per lo studio di linee di patata ottenute tramite ingegneria genetica e genomica [Ph.D. thesis], Department of Soil, Plant and Environmental and Animal Production Science, University of Naples Federico II, 2008.
  22. J. J. Doyle and J. L. Doyle, “Isolation of plant DNA from fresh tissue,” Focus, vol. 12, pp. 13–15, 1990. View at Google Scholar
  23. D. Jaccoud, K. Peng, D. Feinstein, and A. Kilian, “Diversity arrays: a solid state technology for sequence information independent genotyping,” Nucleic Acids Research, vol. 29, no. 4, article E25, 2001. View at Google Scholar · View at Scopus
  24. L. Mueller, S. Tanksley, J. J. Giovannoni et al., “A snapshot of the emerging tomato genome sequence,” The Plant Genome, vol. 2, no. 1, pp. 78–92, 2009. View at Google Scholar
  25. G. Gremme, V. Brendel, M. E. Sparks, and S. Kurtz, “Engineering a software tool for gene structure prediction in higher organisms,” Information and Software Technology, vol. 47, no. 15, pp. 965–978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Huang and A. Madan, “CAP3: a DNA sequence assembly program,” Genome Research, vol. 9, no. 9, pp. 868–877, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and T. L. Madden, “NCBI BLAST: a better web interface,” Nucleic Acids Research, vol. 36, pp. W5–W9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Blüthgen, K. Brand, B. Cajavec, M. Swat, H. Herzel, and D. Beule, “Biological profiling of gene groups utilizing gene ontology,” Genome Informatics, vol. 16, pp. 106–115, 2005. View at Google Scholar
  30. A. Conesa, S. Götz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles, “Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research,” Bioinformatics, vol. 21, no. 18, pp. 3674–3676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Wenzl, H. Li, J. Carling et al., “A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits,” BMC Genomics, vol. 7, article 206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. M. Spooner and T. Raul Castillo, “Reexamination of series relationships of South American wild potatoes (Solanaceae: Solanum sect. Petota): evidence from chloroplast DNA restriction site variation,” American Journal of Botany, vol. 84, no. 5, pp. 671–685, 1997. View at Google Scholar · View at Scopus
  33. D. M. Spooner, K. McLean, G. Ramsay, R. Waugh, and G. J. Bryan, “A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14694–14699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Gargano, N. Scotti, A. Vezzi et al., “Genome-wide analysis of plastome sequence variation and development of plastidial CAPS markers in common potato and related Solanum species,” Genetic Resources and Crop Evolution, pp. 1–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. D. M. Spooner, G. J. Anderson, and R. K. Jansen, “Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae),” American Journal of Botany, vol. 80, no. 6, pp. 676–688, 1993. View at Google Scholar
  36. T. L. Weese and L. Bohs, “A three-gene phylogeny of the genus Solanum (Solanaceae),” Systematic Botany, vol. 32, no. 2, pp. 445–463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Wang, A. Diehl, F. Wu et al., “Sequencing and comparative analysis of a conserved syntenic segment in the solanaceae,” Genetics, vol. 180, no. 1, pp. 391–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Wu and S. D. Tanksley, “Chromosomal evolution in the plant family Solanaceae,” BMC Genomics, vol. 11, no. 1, article 182, 2010. View at Publisher · View at Google Scholar · View at Scopus