Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2013, Article ID 383024, 12 pages
http://dx.doi.org/10.1155/2013/383024
Research Article

A Complex Network of MicroRNAs Expressed in Brain and Genes Associated with Amyotrophic Lateral Sclerosis

Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad 500007, India

Received 10 January 2013; Accepted 5 June 2013

Academic Editor: John Parkinson

Copyright © 2013 Santosh Shinde et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organisation, “The world health report 2001. Mental health: new understanding, new hope,” World Health Organisation, Geneva, Switzerland, 2001.
  2. J. M. Charcot and A. Joffroy, “Deux cas d’atrophie musculaire progressive avec lésions de la substance grise et de faisceaux anterolatéraux de la moelle épiniére,” Archives de Physiologie Normale et Pathologique, vol. 1, pp. 354–367, 1869. View at Google Scholar
  3. L. C. Wijesekera and P. N. Leigh, “Amyotrophic lateral sclerosis,” Orphanet Journal of Rare Diseases, vol. 4, no. 1, article 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. W. Mulder, L. T. Kurland, K. P. Offord, and M. Beard, “Familial adult motor neuron disease: amyotrophic lateral sclerosis,” Neurology, vol. 36, no. 4, pp. 511–517, 1986. View at Google Scholar · View at Scopus
  5. D. W. Cleveland and J. D. Rothstein, “From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS,” Nature Reviews Neuroscience, vol. 2, no. 11, pp. 806–819, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. M. Worms, “The epidemiology of motor neuron diseases: a review of recent studies,” Journal of the Neurological Sciences, vol. 191, no. 1-2, pp. 3–9, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Abhinav, A. Al-Chalabi, T. Hortobagyi, and P. N. Leigh, “Electrical injury and amyotrophic lateral sclerosis: a systematic review of the literature,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 450–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Zoccolella, E. Beghi, G. Palagano et al., “Analysis of survival and prognostic factors in amyotrophic lateral sclerosis: a population based study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 1, pp. 33–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Logroscino, E. Beghi, S. Zoccolella et al., “Incidence of amyotrophic lateral sclerosis in southern Italy: a population based study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 8, pp. 1094–1098, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. J. Traynor, M. B. Codd, B. Corr, C. Forde, E. Frost, and O. Hardiman, “Incidence and prevalence of ALS in Ireland, 1995–1997 a population-based study,” Neurology, vol. 52, no. 3, pp. 504–509, 1999. View at Google Scholar · View at Scopus
  11. S. Cronin, O. Hardiman, and B. J. Traynor, “Ethnic variation in the incidence of ALS: a systematic review,” Neurology, vol. 68, no. 13, pp. 1002–1007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. G. Lesnick, E. J. Sorenson, J. E. Ahlskog et al., “Beyond Parkinson disease: amyotrophic lateral sclerosis and the Axon guidance pathway,” PLoS ONE, vol. 3, no. 1, Article ID e1449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Chevalier-Larsen and E. L. F. Holzbaur, “Axonal transport and neurodegenerative disease,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1094–1108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Boillée, C. Vande Velde, and D. Cleveland, “ALS: a disease of motor neurons and their nonneuronal neighbors,” Neuron, vol. 52, no. 1, pp. 39–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Rajewsky, “microRNA target predictions in animals,” Nature Genetics, vol. 38, no. 1, pp. S8–S13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Singh, M. Pal Bhadra, H. J. Girschick, and U. Bhadra, “MicroRNAs—micro in size but macro in function,” FEBS Journal, vol. 275, no. 20, pp. 4929–4944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. N. Bhattacharyya, R. Habermacher, U. Martine, E. I. Closs, and W. Filipowicz, “Relief of microRNA-mediated translational repression in human cells subjected to stress,” Cell, vol. 125, no. 6, pp. 1111–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. W. J. Lukiw, Y. Zhao, and G. C. Jian, “An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in alzheimer disease and in stressed human brain cells,” Journal of Biological Chemistry, vol. 283, no. 46, pp. 31315–31322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Saba, C. D. Goodman, R. L. C. H. Huzarewich, C. Robertson, and S. A. Booth, “A miRNA signature of prion induced neurodegeneration,” PLoS ONE, vol. 3, no. 11, Article ID e3652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Bushati and S. M. Cohen, “microRNAs in neurodegeneration,” Current Opinion in Neurobiology, vol. 18, no. 3, pp. 292–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. R. Brown and P. Sanseau, “A computational view of microRNAs and their targets,” Drug Discovery Today, vol. 10, no. 8, pp. 595–601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Bentwich, “Prediction and validation of microRNAs and their targets,” FEBS Letters, vol. 579, no. 26, pp. 5904–5910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Berezikov, V. Guryev, J. Van De Belt, E. Wienholds, R. H. A. Plasterk, and E. Cuppen, “Phylogenetic shadowing and computational identification of human microRNA genes,” Cell, vol. 120, no. 1, pp. 21–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Kanehisa, M. Araki, S. Goto et al., “KEGG for linking genomes to life and the environment,” Nucleic Acids Research, vol. 36, no. 1, pp. D480–D484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Griffiths-Jones, H. K. Saini, S. Van Dongen, and A. J. Enright, “miRBase: tools for microRNA genomics,” Nucleic Acids Research, vol. 36, no. 1, pp. D154–D158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, and D. S. Marks, “MicroRNA targets in Drosophila,” Genome Biology, vol. 5, pp. 1–12, 2003. View at Google Scholar · View at Scopus
  27. B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human microRNA targets,” PLoS Biology, vol. 2, no. 11, article e363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster, “Complete suboptimal folding of RNA and the stability of secondary structures,” Biopolymers, vol. 49, pp. 145–165, 1999. View at Google Scholar
  29. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Zhou, X. Duan, J. Qian, and F. Li, “Abundant conserved microRNA target sites in the 5′-untranslated region and coding sequence,” Genetica, vol. 137, no. 2, pp. 159–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. Duursma, M. Kedde, M. Schrier, C. Le Sage, and R. Agami, “miR-148 targets human DNMT3b protein coding region,” RNA, vol. 14, no. 5, pp. 872–877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. J. Forman, A. Legesse-Miller, and H. A. Coller, “A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 14879–14884, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Lal, H. H. Kim, K. Abdelmohsen et al., “p16INK4a translation suppressed by miR-24,” PLoS ONE, vol. 3, no. 3, Article ID e1864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Rigoutsos, “New tricks for animal micrornas: targeting of amino acid coding regions at conserved and nonconserved sites,” Cancer Research, vol. 69, no. 8, pp. 3245–3248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Tay, J. Zhang, A. M. Thomson, B. Lim, and I. Rigoutsos, “MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation,” Nature, vol. 455, no. 7216, pp. 1124–1128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Tanzer and P. F. Stadler, “Molecular evolution of a microRNA cluster,” Journal of Molecular Biology, vol. 339, no. 2, pp. 327–335, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Hayashita, H. Osada, Y. Tatematsu et al., “A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation,” Cancer Research, vol. 65, no. 21, pp. 9628–9632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Samols, J. Hu, R. L. Skalsky, and R. Renne, “Cloning and identification of a MicroRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus,” Journal of Virology, vol. 79, no. 14, pp. 9301–9305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Zhang, Y.-Q. Wang, and B. Su, “Molecular evolution of a primate-specific microRNA family,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1493–1502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Tranzer and P. F. Stadler, “Evolution of microRNAs,” Methods in Molecular Biology, vol. 342, pp. 335–350, 2006. View at Google Scholar · View at Scopus
  42. J. R. Lytle, T. A. Yario, and J. A. Steitz, “Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′; UTR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9667–9672, 2007. View at Publisher · View at Google Scholar · View at Scopus