Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2013, Article ID 410407, 7 pages
http://dx.doi.org/10.1155/2013/410407
Research Article

Association of Genetic Variation in Calmodulin and Left Ventricular Mass in Full-Term Newborns

1Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Ulical Powstańców Wielkopolskich 72, 71-111 Szczecin, Poland
2Department of Cardiology, Pomeranian Medical University, Szczecin, Poland
3Department of Pediatrics, Pomeranian Medical University, Szczecin, Poland

Received 17 July 2013; Accepted 20 September 2013

Academic Editor: Giulia Piaggio

Copyright © 2013 Iwona Gorący et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Levy, R. J. Garrison, D. D. Savage, W. B. Kannel, and W. P. Castelli, “Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study,” The New England Journal of Medicine, vol. 322, no. 22, pp. 1561–1566, 1990. View at Google Scholar · View at Scopus
  2. N. Frey and E. N. Olson, “Cardiac hypertrophy: the good, the bad, and the ugly,” Annual Review of Physiology, vol. 65, pp. 45–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. G. E. Hardingham and H. Bading, “Nuclear calcium: a key regulator of gene expression,” BioMetals, vol. 11, no. 4, pp. 345–358, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Passier, H. Zeng, N. Frey et al., “CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo,” Journal of Clinical Investigation, vol. 105, no. 10, pp. 1395–1406, 2000. View at Google Scholar · View at Scopus
  5. H. L. Sweeney, B. F. Bowman, and J. T. Stull, “Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function,” American Journal of Physiology, vol. 264, no. 5, pp. C1085–C1095, 1993. View at Google Scholar · View at Scopus
  6. P. Ding, J. Huang, P. K. Battiprolu, J. A. Hill, K. E. Kamm, and J. T. Stull, “Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo,” Journal of Biological Chemistry, vol. 285, no. 52, pp. 40819–40829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. P. Braun and H. Schulman, “The multifunctional calcium/calmodulin-dependent protein kinase: from form to function,” Annual Review of Physiology, vol. 57, pp. 417–445, 1995. View at Google Scholar · View at Scopus
  8. B. Li, J. R. Dedman, and M. A. Kaetzel, “Nuclear Ca2+/calmodulin-dependent protein kinase II in the murine heart,” Biochimica et Biophysica Acta, vol. 1763, no. 11, pp. 1275–1281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Zhang, L. S. Maier, N. D. Dalton et al., “The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure,” Circulation Research, vol. 92, no. 8, pp. 912–919, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Hagemann, J. Bohlender, B. Hoch, E.-G. Kraus, and P. Karczewski, “Expression of Ca2+/calmodulin-dependent protein kinase II δ-subunit isoforms in rats with hypertensive cardiac hypertrophy,” Molecular and Cellular Biochemistry, vol. 220, no. 1-2, pp. 69–76, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Zhang and J. H. Brown, “Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure,” Cardiovascular Research, vol. 63, no. 3, pp. 476–486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Zhang, E. N. Johnson, Y. Gu et al., “The cardiac-specific nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity,” Journal of Biological Chemistry, vol. 277, no. 2, pp. 1261–1267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Fladmark, O. T. Brustugun, G. Mellgren et al., “Ca2+/calmodulin-dependent protein kinase II is required for microcystin-induced apoptosis,” Journal of Biological Chemistry, vol. 277, no. 4, pp. 2804–2811, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Mototani, A. Iida, Y. Nakamura, and S. Ikegawa, “Identification of sequence polymorphisms in CALM2 and analysis of association with hip osteoarthritis in a Japanese population,” Journal of Bone and Mineral Metabolism, vol. 28, no. 5, pp. 547–553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Liu, L. Xie, J. Ye, Y. Liu, and X. He, “Screening of candidate genes for primary open angle glaucoma,” Molecular Vision, vol. 18, pp. 2119–2126, 2012. View at Google Scholar
  16. R. S. Vasan, N. L. Glazer, J. F. Felix et al., “Genetic variants associated with cardiac structur and function,” JAMA, vol. 302, no. 2, pp. 168–178, 2009. View at Publisher · View at Google Scholar
  17. R. D. Mosteller, “Simplified calculation of body-surface area,” The New England Journal of Medicine, vol. 317, no. 17, p. 1098, 1987. View at Google Scholar · View at Scopus
  18. F. U. Huwez, A. B. Houston, J. Watson, S. McLaughin, and P. W. Macfarlane, “Age and body surface area related normal upper and lower limits of M mode echocardiographic measurements and left ventricular volume and mass from infancy to early adulthood,” British Heart Journal, vol. 72, no. 3, pp. 276–280, 1994. View at Google Scholar · View at Scopus
  19. H. A. Verhaaren, R. M. Schieken, M. Mosteller, J. K. Hewitt, L. J. Eaves, and W. E. Nance, “Bivariate genetic analysis of left ventricular mass and weight in pubertal twins (The Medical College of Virginia Twin Study),” American Journal of Cardiology, vol. 68, no. 6, pp. 661–668, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Swan, D. H. Birnie, S. Padmanabhan, G. Inglis, J. M. C. Connell, and W. S. Hillis, “The genetic determination of left ventricular mass in healthy adults,” European Heart Journal, vol. 24, no. 6, pp. 577–582, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Sharma, R. P. S. Middelberg, T. Andrew, M. R. Johnson, H. Christley, and M. J. Brown, “Heritability of left ventricular mass in a large cohort of twins,” Journal of Hypertension, vol. 24, no. 2, pp. 321–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. N. Bella, J. W. MacCluer, M. J. Roman et al., “Heritability of left ventricular dimensions and mass in American Indians: the Strong Heart Study,” Journal of Hypertension, vol. 22, no. 2, pp. 281–286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. T. L. Assimes, B. Narasimhan, T. B. Seto et al., “Heritability of left ventricular mass in Japanese families living in Hawaii: the SAPPHIRe study,” Journal of Hypertension, vol. 25, no. 5, pp. 985–992, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Li, K. Lu, Z. Chen, T. Mu, Z. Hu, and X. Li, “Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids,” Genetics, vol. 180, no. 3, pp. 1725–1742, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. J. Meyers, T. H. Mosley, E. Fox et al., “Genetic variations associated with echocardiographic left ventricular traits in hypertensive blacks,” Hypertension, vol. 49, no. 5, pp. 992–999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Santovito, P. Cervella, D. Schleicherova, and M. Delpero, “Genotyping for cytokine polymorphisms in a Northern Ivory Coast population reveals a high frequency of the heterozygote genotypes for the TNF-α-308G/A SNP,” International Journal of Immunogenetics, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Y. Miasnikova, A. I. Sergueeva, M. Nouraie et al., “The heterozygote advantage of the chuvash polycythemia VHLR200W mutation may be protection against anemia,” Haematologica, vol. 96, no. 9, pp. 1371–1374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Sellis, B. J. Callahan, D. A. Petrov, and P. W. Messer, “Heterozygote advantage as a natural consequence of adaptation in diploids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 51, pp. 20666–20671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. G. C. Williams, “Plejotropy, natural selection and the evolution of senescence,” Evolution, vol. 11, pp. 398–411, 1957. View at Google Scholar
  30. S. Chang, T. A. McKinsey, C. L. Zhang, J. A. Richardson, J. A. Hill, and E. N. Olson, “Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development,” Molecular and Cellular Biology, vol. 24, no. 19, pp. 8467–8476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. D. Molkentin, J.-R. Lu, C. L. Antos et al., “A calcineurin-dependent transcriptional pathway for cardiac hypertrophy,” Cell, vol. 93, no. 2, pp. 215–228, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. S. Ho, K. Shang, and R. Duffield, “Calmodulin regulation of the cholinergic receptor in the rat heart during ontogeny and senescence,” Mechanisms of Ageing and Development, vol. 36, no. 2, pp. 143–154, 1986. View at Google Scholar · View at Scopus
  33. C. D. Rasmussen and A. R. Means, “Calmodulin is involved in regulation of cell proliferation,” The EMBO Journal, vol. 6, no. 13, pp. 3961–3968, 1987. View at Google Scholar · View at Scopus
  34. A. M. Gillett, M. J. Wallace, M. T. Gillespie, and S. B. Hooper, “Increased expansion of the lung stimulates calmodulin 2 expression in fetal sheep,” American Journal of Physiology, vol. 282, no. 3, pp. L440–L447, 2002. View at Google Scholar · View at Scopus
  35. S. L. Toutenhoofd, D. Foletti, R. Wicki et al., “Characterization of the human CALM2 calmodulin gene and comparison of the transcriptional activity of CALM1, CALM2 and CALM3,” Cell Calcium, vol. 23, no. 5, pp. 323–338, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Colomer, N. Agell, P. Engel, and O. Bachs, “Expression of calmodulin and calmodulin binding proteins in lymphoblastoid cells,” Journal of Cellular Physiology, vol. 159, no. 3, pp. 542–550, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Gorący, G. Dawid, B. Łoniewska, J. Gorący, and A. Ciechanowicz, “Genetics of the rennin-angitensin system with respect to cardiac and blood pressure phenotypes in healthy newborns infants,” Journal of Renin-Angiotensin-Aldosterone System. View at Publisher · View at Google Scholar
  38. I. Gorący, K. Safranow, and G. Dawid, “Common genetic variants of BMP4, BMPR1A, BMPR1B and ACVR1 genes, left ventricular mass and other parameters of heart in newborns,” Genetic Testing Molecular Biomarkerks, vol. 16, no. 11, pp. 1309–1316, 2012. View at Google Scholar
  39. Y. S. Cho, M. J. Go, Y. J. Kim et al., “A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits,” Nature Genetics, vol. 41, no. 5, pp. 527–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Newton-Cheh, T. Johnson, V. Gateva et al., “Genome-wide association study identifies eight loci associated with blood pressure,” Nature Genetics, vol. 41, no. 6, pp. 666–675, 2009. View at Publisher · View at Google Scholar
  41. D. Levy, G. B. Ehret, K. Rice et al., “Genome-wide association study of blood pressure and hypertension,” Nature Genetics, vol. 41, no. 6, pp. 677–687, 2009. View at Publisher · View at Google Scholar
  42. T. Usui, M. Okada, Y. Hara, and H. Yamawaki, “Exploring calmodulin-related proteins, which mediate development of hypertension, in vascular tissues of spontaneous hypertensive rats,” Biochemical and Biophysical Research Communications, vol. 405, no. 1, pp. 47–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Li, W. Li, A. K. Gupta, P. J. Mohler, M. E. Anderson, and I. M. Grumbach, “Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy,” American Journal of Physiology, vol. 298, no. 2, pp. H688–H698, 2010. View at Publisher · View at Google Scholar · View at Scopus