Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2014, Article ID 187146, 10 pages
http://dx.doi.org/10.1155/2014/187146
Review Article

Epigenetic Dynamics: Role of Epimarks and Underlying Machinery in Plants Exposed to Abiotic Stress

1Plant Genomics Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
2School of Biotechnology, University of Jammu, Jammu 180006, India

Received 16 May 2014; Revised 28 July 2014; Accepted 7 August 2014; Published 18 September 2014

Academic Editor: Henry Heng

Copyright © 2014 Manoj Kumar Dhar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Mahajan and N. Tuteja, “Cold, salinity and drought stresses: an overview,” Archives of Biochemistry and Biophysics, vol. 444, no. 2, pp. 139–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. D. Horne, S. K. Chowdhury, and H. H. Q. Heng, “Stress, genomic adaptation, and the evolutionary trade-off,” Frontiers in Genetics, vol. 5, article 92, 2014. View at Publisher · View at Google Scholar
  3. H. Peng and J. Zhang, “Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding,” Progress in Natural Science, vol. 19, no. 9, pp. 1037–1045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Chinnusamy and J. K. Zhu, “Epigenetic regulation of stress responses in plants,” Current Opinion in Plant Biology, vol. 12, no. 2, pp. 133–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Tariq and J. Paszkowski, “DNA and histone methylation in plants,” Trends in Genetics, vol. 20, no. 6, pp. 244–251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Chen and E. Li, “Structure and function of eukaryotic DNA methyltransferases,” Current Topics in Developmental Biology, vol. 60, pp. 55–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Chen, S. Lv, and Y. Meng, “Epigenetic performers in plants,” Development Growth and Differentiation, vol. 52, no. 6, pp. 555–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Cao, N. M. Springer, M. G. Muszynski, R. L. Phillips, S. Kaeppler, and S. E. Jacobsen, “Conserved plant genes with similarity to mammalian de novo DNA methyltransferases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4979–4984, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Law and S. E. Jacobsen, “Establishing, maintaining and modifying DNA methylation patterns in plants and animals,” Nature Reviews Genetics, vol. 11, no. 3, pp. 204–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Matzke, T. Kanno, L. Daxinger, B. Huettel, and A. J. M. Matzke, “RNA-mediated chromatin-based silencing in plants,” Current Opinion in Cell Biology, vol. 21, no. 3, pp. 367–376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. I. J. Furner and M. Matzke, “Methylation and demethylation of the Arabidopsis genome,” Current Opinion in Plant Biology, vol. 14, no. 2, pp. 137–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Gehring and S. Henikoff, “DNA methylation dynamics in plant genomes,” Biochimica et Biophysica Acta—Gene Structure and Expression, vol. 1769, no. 5-6, pp. 276–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Ahmed, A. Sarazin, C. Bowler, V. Colot, and H. Quesneville, “Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis,” Nucleic Acids Research, vol. 39, no. 16, pp. 6919–6931, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Cokus, S. Feng, X. Zhang et al., “Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning,” Nature, vol. 452, no. 7184, pp. 215–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Zilberman, M. Gehring, R. K. Tran, T. Ballinger, and S. Henikoff, “Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription,” Nature Genetics, vol. 39, no. 1, pp. 61–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Zemach, I. E. McDaniel, P. Silva, and D. Zilberman, “Genome-wide evolutionary analysis of eukaryotic DNA methylation,” Science, vol. 328, no. 5980, pp. 916–919, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-S. Choi and H. Sano, “Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants,” Molecular Genetics and Genomics, vol. 277, no. 5, pp. 589–600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Aina, S. Sgorbati, A. Santagostino, M. Labra, A. Ghiani, and S. Citterio, “Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp,” Physiologia Plantarum, vol. 121, no. 3, pp. 472–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kovařik, B. Koukalová, M. Bezděk, and Z. Opatrný, “Hypermethylation of tobacco heterochromatic loci in response to osmotic stress,” Theoretical and Applied Genetics, vol. 95, no. 1-2, pp. 301–306, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Bracale, M. Levi, C. Savini, W. Dicorato, and M. G. Galli, “Water deficit in pea root tips: effects on the cell cycle and on the production of dehydrin-like proteins,” Annals of Botany, vol. 79, no. 6, pp. 593–600, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Labra, A. Ghiani, S. Citterio et al., “Analysis of cytosine methylation pattern in response to water deficit in pea root tips,” Plant Biology, vol. 4, no. 6, pp. 694–699, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. K. K. Suji and A. J. Joel, “An epigenetic change in rice cultivars under water stress conditions,” Electronic Journal of Plant Breeding, vol. 1, no. 4, pp. 1142–1143, 2010. View at Google Scholar
  23. O. V. Dyachenko, N. S. Zakharchenko, T. V. Shevchuk, H. J. Bohnert, J. C. Cushman, and Y. I. Buryanov, “Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress,” Biochemistry (Moscow), vol. 71, no. 4, pp. 461–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Akimoto, H. Katakami, H. J. Kim et al., “Epigenetic inheritance in rice plants,” Annals of Botany, vol. 100, no. 2, pp. 205–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Tan, “Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism,” Plant Physiology and Biochemistry, vol. 48, no. 1, pp. 21–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Ou, Y. Zhang, C. Xu et al., “Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.),” PLoS ONE, vol. 7, no. 9, Article ID e41143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. H. P. Kou, Y. Li, X. X. Song et al., “Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.),” Journal of Plant Physiology, vol. 168, no. 14, pp. 1685–1693, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. M. Suzuki and A. Bird, “DNA methylation landscapes: provocative insights from epigenomics,” Nature Reviews Genetics, vol. 9, no. 6, pp. 465–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. S. Sekhon and S. Chopra, “Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene,” Genetics, vol. 181, no. 1, pp. 81–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Kato, A. Miura, J. Bender, S. E. Jacobsen, and T. Kakutani, “Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis,” Current Biology, vol. 13, no. 5, pp. 421–426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Hashida, K. Kitamura, T. Mikami, and Y. Kishima, “Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus,” Plant Physiology, vol. 132, no. 3, pp. 1207–1216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Cheng, M. Daigen, and H. Hirochika, “Epigenetic regulation of the rice retrotransposon Tos17,” Molecular Genetics and Genomics, vol. 276, no. 4, pp. 378–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Rice and C. D. Allis, “Histone methylation versus histone acetylation: new insights into epigenetic regulation,” Current Opinion in Cell Biology, vol. 13, no. 3, pp. 263–273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. L. Berger, “The complex language of chromatin regulation during transcription,” Nature, vol. 447, no. 7143, pp. 407–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-M. Kim, T. K. To, J. Ishida et al., “Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana,” Plant & Cell Physiology, vol. 49, no. 10, pp. 1580–1588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. E. J. Stockinger, Y. Mao, M. K. Regier, S. J. Triezenberg, and M. F. Thomashow, “Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression,” Nucleic Acids Research, vol. 29, no. 7, pp. 1524–1533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. J. Chen and L. Tian, “Roles of dynamic and reversible histone acetylation in plant development and polyploidy,” Biochimica et Biophysica Acta, vol. 1769, no. 5-6, pp. 295–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Hollender and Z. Liu, “Histone deacetylase genes in Arabidopsis development,” Journal of Integrative Plant Biology, vol. 50, no. 7, pp. 875–885, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Pontvianne, T. Blevins, and C. S. Pikaard, “Arabidopsis histone lysine methyltransferases,” Advances in Botanical Research, vol. 53, pp. 1–22, 2010. View at Google Scholar
  40. X. Yu, L. Li, M. Guo, J. Chory, and Y. Yin, “Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis,” PNAS, vol. 105, no. 21, pp. 7618–7623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Miura, M. Nakamura, S. Inagaki, A. Kobayashi, H. Saze, and T. Kakutani, “An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites,” EMBO Journal, vol. 28, no. 8, pp. 1078–1086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Vermaak, K. Ahmad, and S. Henikoff, “Maintenance of chromatin states: an open-and-shut case,” Current Opinion in Cell Biology, vol. 15, no. 3, pp. 266–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. D. M. Bond, E. S. Dennis, B. J. Pogson, and E. J. Finnegan, “Histone acetylation, vernalization insensitive 3, flowering locus C, and the vernalization response,” Molecular Plant, vol. 2, no. 4, pp. 724–737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Zhu, J. C. Jae, Y. Zhu et al., “Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 12, pp. 4945–4950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Sridha and K. Wu, “Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis,” Plant Journal, vol. 46, no. 1, pp. 124–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Gendrel, Z. Lippman, C. Yordan, V. Colot, and R. A. Martienssen, “Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1,” Science, vol. 297, no. 5588, pp. 1871–1873, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. L. M. Johnson, X. Cao, and S. E. Jacobsen, “Interplay between two epigenetic marks: DNA methylation and histone H3 lysine 9 methylation,” Current Biology, vol. 12, no. 16, pp. 1360–1367, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Zhang, V. V. Sridhar, J. Zhu, and A. Kapoor, “Distinctive core histone post-translational modification patterns in Arabidopsis thaliana,” PLoS ONE, vol. 2, no. 11, Article ID e1210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Turck, F. Roudier, S. Farrona et al., “Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27,” PLoS Genetics, vol. 3, article e86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. V. Bernatavichute, X. Zhang, S. Cokus, M. Pellegrini, and S. E. Jacobsen, “Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana,” PLoS ONE, vol. 3, no. 9, Article ID e3156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Zhang, Y. V. Bernatavichute, S. Cokus, M. Pellegrini, and S. E. Jacobsen, “Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana,” Genome Biology, vol. 10, no. 6, article R62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Boyko, P. Kathiria, F. J. Zemp, Y. Yao, I. Pogribny, and I. Kovalchuk, “Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (Virus-induced plant genome instability),” Nucleic Acids Research, vol. 35, no. 5, pp. 1714–1725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. G. S. Scippa, M. di Michele, E. Onelli, G. Patrignani, D. Chiatante, and E. A. Bray, “The histone-like protein H1-S and the response of tomato leaves to water deficit,” Journal of Experimental Botany, vol. 55, no. 394, pp. 99–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Tsuji, H. Saika, N. Tsutsumi, A. Hirai, and M. Nakazono, “Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice,” Plant and Cell Physiology, vol. 47, no. 7, pp. 995–1003, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. K. van Dijk, Y. Ding, S. Malkaram et al., “Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana,” BMC Plant Biology, vol. 10, article 238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Sokol, A. Kwiatkowska, A. Jerzmanowski, and M. Prymakowska-Bosak, “Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications,” Planta, vol. 227, no. 1, pp. 245–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Zhang, S. Zhang, Y. Zhang et al., “Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation,” Plant Cell, vol. 23, no. 1, pp. 396–411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Sunkar, V. Chinnusamy, J. Zhu, and J. Zhu, “Small RNAs as big players in plant abiotic stress responses and nutrient deprivation,” Trends in Plant Science, vol. 12, no. 7, pp. 301–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. T. A. Volpe, C. Kidner, I. M. Hall, G. Teng, S. I. S. Grewal, and R. A. Martienssen, “Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi,” Science, vol. 297, no. 5588, pp. 1833–1837, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. R. Tuttle, A. M. Idris, J. K. Brown, C. H. Haigler, and D. Robertson, “Geminivirus-mediated gene silencing from cotton leaf crumple virus is enhanced by low temperature in cotton,” Plant Physiology, vol. 148, no. 1, pp. 41–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Okano, D. Miki, and K. Shimamoto, “Small interfering RNA (siRNA) targeting of endogenous promoters induces DNA methylation, but not necessarily gene silencing, in rice,” Plant Journal, vol. 53, no. 1, pp. 65–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. B. J. Reinhart, E. G. Weinstein, M. W. Rhoades, B. Bartel, and D. P. Bartel, “MicroRNAs in plants,” Genes and Development, vol. 16, no. 13, pp. 1616–1626, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Gao, X. Bai, L. Yang et al., “Over-expression of osa-MIR396c decreases salt and alkali stress tolerance,” Planta, vol. 231, no. 5, pp. 991–1001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Sunkar and J. K. Zhu, “Novel and stress regulated microRNAs and other small RNAs from Arabidopsis,” Plant Cell, vol. 16, no. 8, pp. 2001–2019, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Zhang, Y. Xu, Q. Huan, and K. Chong, “Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response,” BMC Genomics, vol. 10, article 1471, p. 449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. K. Lv, X. Bai, Y. Li et al., “Profiling of cold-stress-responsive miRNAs in rice by microarrays,” Gene, vol. 459, no. 1-2, pp. 39–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Sunkar, A. Kapoor, and J. Zhu, “Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance,” Plant Cell, vol. 18, no. 8, pp. 2051–2065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. H. S. Guo, Q. Xie, J. F. Fei, and N. H. Chua, “MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development,” Plant Cell, vol. 17, no. 5, pp. 1376–1386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Navarro, P. Dunoyer, F. Jay et al., “A plant miRNA contributes to antibacterial resistance by repressing auxin signaling,” Science, vol. 312, no. 5772, pp. 436–439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Verdel, S. Jia, S. Gerber et al., “RNAi-mediated targeting of heterochromatin by the RITS complex,” Science, vol. 303, no. 5658, pp. 672–676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. I. S. Grewal and D. Moazed, “Heterochromatin and epigenetic control of gene expression,” Science, vol. 301, no. 5634, pp. 798–802, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Yao, A. Bilichak, A. Golubov, T. Blevins, and I. Kovalchuk, “Differential sensitivity of Arabidopsis siRNA biogenesis mutants to genotoxic stress,” Plant Cell Reports, vol. 29, no. 12, pp. 1401–1410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. O. Borsani, J. Zhu, P. E. Verslues, and R. Sunkar, “Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis,” Cell, vol. 123, no. 7, pp. 1279–1291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. M. E. Alvarez, F. Nota, and D. A. Cambiagno, “Epigenetic control of plant immunity,” Molecular Plant Pathology, vol. 11, no. 4, pp. 563–576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Sudarsanam and F. Winston, “The Swi/Snf family: nucleosome-remodeling complexes and transcriptional control,” Trends in Genetics, vol. 16, no. 8, pp. 345–351, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Mlynárová, J. Nap, and T. Bisseling, “The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress,” Plant Journal, vol. 51, no. 5, pp. 874–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Saez, A. Rodrigues, J. Santiago, S. Rubio, and P. L. Rodriguez, “HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis,” Plant Cell, vol. 20, no. 11, pp. 2972–2988, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Perruc, N. Kinoshita, and L. Lopez-Molina, “The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination,” Plant Journal, vol. 52, no. 5, pp. 927–936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Dong, Z. Liu, Y. Zhu et al., “Interacting proteins and differences in nuclear transport reveal specific functions for the NAP1 family proteins in plants,” Plant Physiology, vol. 138, no. 3, pp. 1446–1456, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. Q. Liu, J. Gao, A. W. Dong, and W. H. Shen, “A truncated Arabidopsis nucleosome assembly protein 1, AtNAP1 ;3T , alters plant growth responses to abscisic acid and salt in the Atnap1 ; 3-2 mutant,” Molecular Plant, vol. 2, no. 4, pp. 688–699, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Hennig, R. Bouveret, and W. Gruissem, “MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes,” Trends in Cell Biology, vol. 15, no. 6, pp. 295–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Alexandre, Y. Möller-Steinbach, N. Schönrock, W. Gruissem, and L. Hennig, “Arabidopsis MSI1 is required for negative regulation of the response to drought stress,” Molecular Plant, vol. 2, no. 4, pp. 675–687, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Kim, Y. Hyun, J. Park et al., “A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana,” Nature Genetics, vol. 36, no. 2, pp. 167–171, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. H. H. Q. Heng, S. W. Bremer, J. B. Stevens, K. J. Ye, G. Liu, and C. J. Ye, “Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective,” Journal of Cellular Physiology, vol. 220, no. 3, pp. 538–547, 2009. View at Publisher · View at Google Scholar · View at Scopus