Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2014, Article ID 471461, 9 pages
http://dx.doi.org/10.1155/2014/471461
Research Article

In Silico Genome Comparison and Distribution Analysis of Simple Sequences Repeats in Cassava

Molecular Biology Laboratory, Biology Department, National University of Colombia, Carrera 30 No. 45-03, Bogotá, Colombia

Received 2 May 2014; Accepted 8 September 2014; Published 13 October 2014

Academic Editor: Margarita Hadzopoulou-Cladaras

Copyright © 2014 Andrea Vásquez and Camilo López. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Welsch, J. Arango, C. Bär et al., “Provitamin a accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene,” Plant Cell, vol. 22, no. 10, pp. 3348–3356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. FAO, Food and Agriculture Organization of the United Nations Statistics Division, 2014, http://faostat3.fao.org/faostat-gateway/go/to/browse/Q/*/E.
  3. M. Fregene, F. Angel, R. Gomez et al., “A molecular genetic map of cassava (Manihot esculenta crantz),” Theoretical and Applied Genetics, vol. 95, no. 3, pp. 431–441, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Chen, Z. Xia, Y. Fu, C. Lu, and W. Wang, “Constructing a genetic linkage map using an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz),” Plant Molecular Biology Reporter, vol. 28, no. 4, pp. 676–683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Lebot, Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams, Aroids, Crop Production Science in Horticulture Series no. 17, CABI, Cambridge, Mass, USA, 2009.
  6. A. Burns, R. Gleadow, J. Cliff, A. Zacarias, and T. Cavagnaro, “Cassava: the drought, war and famine crop in a changing world,” Sustainability, vol. 2, no. 11, pp. 3572–3607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Raemakers, M. Schreuder, V. Anggraini, H. Putten, I. Pereira, and R. Visser, “Cassava,” in Transgenic Crops IV, E.-C. Pua and M. R. Davey, Eds., pp. 317–335, Springer, Berlin, Germany, 2007. View at Google Scholar
  8. S. Kunkeaw, S. Tangphatsornruang, D. R. Smith, and K. Triwitayakorn, “Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers,” Plant Breeding, vol. 129, no. 1, pp. 112–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Nassar and R. Ortiz, “Breeding cassava to feed the poor,” Scientific American, vol. 302, no. 5, pp. 78–84, 2010. View at Google Scholar
  10. M. Zou, Z. Xia, P. Ling et al., “Mining EST-derived SSR markers to assess genetic diversity in cassava (Manihot esculenta Crantz),” Plant Molecular Biology Reporter, vol. 29, no. 4, pp. 961–971, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Lörz and J. Widholm, Eds., Biotechnology in Agriculture and Forestry 55. Molecular Marker Systems in Plant Breeding and Crop Improvement, Springer, 2005.
  12. H. Ellegren, “Microsatellites: simple sequences with complex evolution,” Nature Reviews Genetics, vol. 5, no. 6, pp. 435–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. B. C. Y. Collard, M. Z. Z. Jahufer, J. B. Brouwer, and E. C. K. Pang, “An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts,” Euphytica, vol. 142, no. 1-2, pp. 169–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Tautz and M. Renz, “Simple sequences are ubiquitous repetitive components of eukaryotic genomes,” Nucleic Acids Research, vol. 12, no. 10, pp. 4127–4138, 1984. View at Publisher · View at Google Scholar · View at Scopus
  15. R. K. Kalia, M. K. Rai, S. Kalia, R. Singh, and A. K. Dhawan, “Microsatellite markers: an overview of the recent progress in plants,” Euphytica, vol. 177, no. 3, pp. 309–334, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. C. de Bang, A. A. Raji, and I. L. Ingelbrecht, “A multiplex microsatellite marker kit for diversity assessment of large cassava (Manihot esculenta Crantz) germplasm collections,” Plant Molecular Biology Reporter, vol. 29, no. 3, pp. 655–662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. O. K. Moyib, O. A. Odunola, and A. G. O. Dixon, “SSR markers reveal genetic variation between improved cassava cultivars and landraces within a collection of Nigerian cassava germplasm,” African Journal of Biotechnology, vol. 6, no. 23, pp. 2666–2674, 2007. View at Google Scholar · View at Scopus
  18. Y. Lokko, A. Dixon, S. Offei, E. Danquah, and M. Fregene, “Assessment of genetic diversity among African cassava Manihot esculenta Grantz accessions resistant to the cassava mosaic virus disease using SSR markers,” Genetic Resources and Crop Evolution, vol. 53, no. 7, pp. 1441–1453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Stàgel, E. Portis, L. Toppino, G. L. Rotino, and S. Lanteri, “Gene-based microsatellite development for mapping and phylogeny studies in eggplant,” BMC Genomics, vol. 9, article 357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Lawson and L. Zhang, “Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes,” Genome Biology, vol. 7, no. 2, article R14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ashkani, M. Y. Rafii, I. Rusli et al., “SSRs for marker-assisted selection for blast resistance in rice (Oryza sativa L.),” Plant Molecular Biology Reporter, vol. 30, no. 1, pp. 79–86, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sraphet, A. Boonchanawiwat, T. Thanyasiriwat et al., “SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz),” Theoretical and Applied Genetics, vol. 122, no. 6, pp. 1161–1170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. A. Raji, J. V. Anderson, O. A. Kolade, A. G. Dixon, and I. L. Ingelbrecht, “Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility,” BMC Plant Biology, vol. 9, article 118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Meksem and G. Kahl, The Handbook of Plant Genome Mapping Genetic and Physical Mapping, G. N. Kahl and K. Meksem, Eds., Wiley-VCH, Weinheim, Germany, 2005.
  25. R. E. C. Mba, P. Stephenson, K. Edwards et al., “Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava,” Theoretical and Applied Genetics, vol. 102, no. 1, pp. 21–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Powell, G. C. Machray, and J. Proven, “Polymorphism revealed by simple sequence repeats,” Trends in Plant Science, vol. 1, no. 7, pp. 215–222, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. A. C. Roa, P. Chavarriaga-Aguirre, M. C. Duque et al., “Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: Allelic polymorphism and degree of relationship,” The American Journal of Botany, vol. 87, no. 11, pp. 1647–1655, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Temnykh, G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour, and S. McCouch, “Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential,” Genome Research, vol. 11, no. 8, pp. 1441–1452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. Y.-C. Li, A. B. Korol, T. Fahima, A. Beiles, and E. Nevo, “Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review,” Molecular Ecology, vol. 11, no. 12, pp. 2453–2465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Ferguson, I. Rabbi, D. J. Kim, M. Gedil, L. A. B. Lopez-Lavalle, and E. Okogbenin, “Molecular markers and their application to cassava breeding: past, present and future,” Tropical Plant Biology, vol. 5, no. 1, pp. 95–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Kashi, D. King, and M. Soller, “Simple sequence repeats as a source of quantitative genetic variation,” Trends in Genetics, vol. 13, no. 2, pp. 74–78, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Sonah, R. K. Deshmukh, A. Sharma et al., “Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium,” PLoS ONE, vol. 6, no. 6, Article ID e21298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Zhang, D. Yuan, S. Yu et al., “Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana,” Bioinformatics, vol. 20, no. 7, pp. 1081–1086, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Chavarriaga-Aguirre, M. M. Maya, M. W. Bonierbale et al., “Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability,” Theoretical and Applied Genetics, vol. 97, no. 3, pp. 493–501, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Lokko, E. Okogbenin, C. Mba, A. Dixon, A. Raji, and M. Fregene, “Cassava,” in Pulses, Sugar and Tuber Crops, C. Kole, Ed., pp. 249–269, Springer, Berlin, Germany, 2007. View at Google Scholar
  36. M. A. Fregene, M. Suarez, J. Mkumbira et al., “Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop,” Theoretical and Applied Genetics, vol. 107, no. 6, pp. 1083–1093, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Elias, G. S. Mühlen, D. McKey, A. C. Roa, and J. Tohme, “Genetic diversity of traditional South American landraces of cassava (Manihot esculenta Crantz): an analysis using microsatellites,” Economic Botany, vol. 58, no. 2, pp. 242–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Raghu, N. Senthil, T. Saraswathi et al., “Morphological and simple sequence repeats (SSR) based finger printing of south indian cassava germplasm,” International Journal of Integrative Biology, vol. 1, no. 2, pp. 141–148, 2007. View at Google Scholar
  39. A. M. Alzate, F. A. Vallejo, H. Ceballos, J. Pérez, and M. Fregene, “Variabilidad genética de la yuca cultivada por pequeños agricultores de la región Caribe de Colombia,” Acta Agronómica, vol. 59, no. 4, pp. 385–393, 2010. View at Google Scholar
  40. P. Hurtado, K. M. Olsen, C. Buitrago et al., “Comparison of simple sequence repeat (SSR) and diversity array technology (DArT) markers for assessing genetic diversity in cassava (Manihot esculenta Crantz),” Plant Genetic Resources: Characterisation and Utilisation, vol. 6, no. 3, pp. 208–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Prochnik, P. R. Marri, B. Desany et al., “The cassava genome: current progress, future directions,” Tropical Plant Biology, vol. 5, no. 1, pp. 88–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. J. H. Mun, D. J. Kim, H. K. Choi et al., “Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps,” Genetics, vol. 172, no. 4, pp. 2541–2555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. A. P. Chan, J. Crabtree, Q. Zhao et al., “Draft genome sequence of the oilseed species Ricinus communis,” Nature Biotechnology, vol. 28, no. 9, pp. 951–956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Sato, H. Hirakawa, S. Isobe et al., “Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L,” DNA Research, vol. 18, no. 1, pp. 65–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Smedley, S. Haider, B. Ballester et al., “BioMart—biological queries made easy,” BMC Genomics, vol. 10, article 22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Rice, L. Longden, and A. Bleasby, “EMBOSS: the European Molecular Biology Open Software Suite,” Trends in Genetics, vol. 16, no. 6, pp. 276–277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Zhi-Liang, J. Bao, and J. Reecy, “CateGOrizer: a web-based program to batch analyze gene ontology classification categories,” Online Journal of Bioinformatics, vol. 9, no. 2, pp. 108–112, 2008. View at Google Scholar
  48. M. Morgante, M. Hanafey, and W. Powell, “Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes,” Nature Genetics, vol. 30, no. 2, pp. 194–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. R. K. Varshney, A. Graner, and M. E. Sorrells, “Genic microsatellite markers in plants: features and applications,” Trends in Biotechnology, vol. 23, no. 1, pp. 48–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. L. C. da Maia, V. Q. de Souza, M. M. Kopp, F. I. F. de Carvalho, and A. C. de Oliveira, “Tandem repeat distribution of gene transcripts in three plant families,” Genetics and Molecular Biology, vol. 32, no. 4, pp. 822–833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Morgante and A. M. Olivieri, “PCR-amplified microsatellites as markers in plant genetics,” Plant Journal, vol. 3, no. 1, pp. 175–182, 1993. View at Publisher · View at Google Scholar · View at Scopus
  52. F. C. Victoria, L. C. da Maia, and A. C. de Oliveira, “In silico comparative analysis of SSR markers in plants,” BMC Plant Biology, vol. 11, article 15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Cardle, L. Ramsay, D. Milbourne, M. Macaulay, D. Marshall, and R. Waugh, “Computational and experimental characterization of physically clustered simple sequence repeats in plants,” Genetics, vol. 156, no. 2, pp. 847–854, 2000. View at Google Scholar · View at Scopus
  54. Y. C. Li, A. B. Korol, T. Fahima, and E. Nevo, “Microsatellites within genes: structure, function, and evolution,” Molecular Biology and Evolution, vol. 21, no. 6, pp. 991–1007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Grover, V. Aishwarya, and P. C. Sharma, “Biased distribution of microsatellite motifs in the rice genome,” Molecular Genetics and Genomics, vol. 277, no. 5, pp. 469–480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. C. E. López, L. M. Quesada-Ocampo, A. Bohórquez et al., “Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta,” Genome, vol. 50, no. 12, pp. 1078–1088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Tangphatsornruang, S. Sraphet, R. Singh, E. Okogbenin, M. Fregene, and K. Triwitayakorn, “Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz,” Molecular Ecology Resources, vol. 8, no. 3, pp. 682–685, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Kunkeaw, T. Yoocha, S. Sraphet et al., “Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz),” Molecular Breeding, vol. 27, no. 1, pp. 67–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Awoleye, M. van Duren, J. Dolezel, and F. J. Novak, “Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding,” Euphytica, vol. 76, no. 3, pp. 195–202, 1994. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Trivedi, “Microsatellites (SSRs): puzzles within puzzle,” Indian Journal of Biotechnology, vol. 3, no. 3, pp. 331–347, 2004. View at Google Scholar · View at Scopus