Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2016 (2016), Article ID 4512493, 14 pages
http://dx.doi.org/10.1155/2016/4512493
Research Article

Comparative Genomics Analysis of Two Different Virulent Bovine Pasteurella multocida Isolates

1The State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China
2College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, China

Received 28 July 2016; Accepted 2 November 2016

Academic Editor: Sylvia Hagemann

Copyright © 2016 Huihui Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Ewers, A. Lübke-Becker, A. Bethe, S. Kießling, M. Filter, and L. H. Wieler, “Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status,” Veterinary Microbiology, vol. 114, no. 3-4, pp. 304–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. W. A. Hill and J. P. Brown, “Zoonoses of rabbits and rodents,” Veterinary Clinics of North America—Exotic Animal Practice, vol. 14, no. 3, pp. 519–531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Souza, “Bacterial and parasitic zoonoses of exotic pets,” Veterinary Clinics of North America—Exotic Animal Practice, vol. 12, no. 3, pp. 401–415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Adler, C. Cestero, and R. B. Brown, “Septic shock from Pasturella multocida following a cat bite: case report and review of literature,” Connecticut Medicine, vol. 75, no. 10, pp. 603–605, 2011. View at Google Scholar · View at Scopus
  5. J. Heydemann, J. S. Heydemann, and S. Antony, “Acute infection of a total knee arthroplasty caused by Pasteurella multocida: a case report and a comprehensive review of the literature in the last 10 years,” International Journal of Infectious Diseases, vol. 14, no. 3, pp. e242–e245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Dendle and D. Looke, “Review article: animal bites: an update for management with a focus on infections,” Emergency Medicine Australasia, vol. 20, no. 6, pp. 458–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. A. Wilson and M. Ho, “Pasteurella multocida: from zoonosis to cellular microbiology,” Clinical Microbiology Reviews, vol. 26, no. 3, pp. 631–655, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. B. J. May, Q. Zhang, L. L. Li, M. L. Paustian, T. S. Whittam, and V. Kapur, “Complete genomic sequence of Pasteurella multocida, Pm70,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3460–3465, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. D. Boyce, T. Seemann, B. Adler, and M. Harper, “Pathogenomics of Pasteurella multocida,” Current Topics in Microbiology and Immunology, vol. 361, pp. 23–38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Dziva, A. P. Muhairwa, M. Bisgaard, and H. Christensen, “Diagnostic and typing options for investigating diseases associated with Pasteurella multocida,” Veterinary Microbiology, vol. 128, no. 1-2, pp. 1–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Verma, M. Sharma, S. Katoch et al., “Profiling of virulence associated genes of Pasteurella multocida isolated from cattle,” Veterinary Research Communications, vol. 37, no. 1, pp. 83–89, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Harper, J. D. Boyce, and B. Adler, “Pasteurella multocida pathogenesis: 125 years after Pasteur,” FEMS Microbiology Letters, vol. 265, no. 1, pp. 1–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Katoch, M. Sharma, R. D. Patil, S. Kumar, and S. Verma, “In vitro and in vivo pathogenicity studies of Pasteurella multocida strains harbouring different ompA,” Veterinary Research Communications, vol. 38, no. 3, pp. 183–191, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. G. B. Michael, K. Kadlec, M. T. Sweeney et al., “ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer,” Journal of Antimicrobial Chemotherapy, vol. 67, no. 1, pp. 91–100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Liu, M. Yang, Z. Xu et al., “Complete genome sequence of Pasteurella multocida HN06, a toxigenic strain of serogroup D,” Journal of Bacteriology, vol. 194, no. 12, pp. 3292–3293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. K. M. Townsend, J. D. Boyce, J. Y. Chung, A. J. Frost, and B. Adler, “Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system,” Journal of Clinical Microbiology, vol. 39, no. 3, pp. 924–929, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. B. F. Yang, N. Z. Li, L. X. Zou et al., “Identification and partial biological characteristics of six serotype A Pasteurella multocida from beef cattle,” Chinese Journal of Preventive Veterinary Medicine, vol. 36, no. 6, pp. 487–489, 2014. View at Google Scholar
  18. R. Li, H. Zhu, J. Ruan et al., “De novo assembly of human genomes with massively parallel short read sequencing,” Genome Research, vol. 20, no. 2, pp. 265–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Lagesen, P. Hallin, E. A. Rødland, H.-H. Stærfeldt, T. Rognes, and D. W. Ussery, “RNAmmer: consistent and rapid annotation of ribosomal RNA genes,” Nucleic Acids Research, vol. 35, no. 9, pp. 3100–3108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. T. M. Lowe and S. R. Eddy, “tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence,” Nucleic Acids Research, vol. 25, no. 5, pp. 955–964, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Frech, C. Choo, and N. Chen, “FeatureStack: Perl module for comparative visualization of gene features,” Bioinformatics, vol. 28, no. 23, pp. 3137–3138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Kurtz, A. Phillippy, A. L. Delcher et al., “Versatile and open software for comparing large genomes,” Genome Biology, vol. 5, no. 2, p. R12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. A. Rasko, G. S. A. Myers, and J. Ravel, “Visualization of comparative genomic analyses by BLAST score ratio,” BMC Bioinformatics, vol. 6, article 2, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. D. A. Rasko, J. Ravel, O. A. Økstad et al., “The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1,” Nucleic Acids Research, vol. 32, no. 3, pp. 977–988, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Akhter, R. K. Aziz, and R. A. Edwards, “PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies,” Nucleic Acids Research, vol. 40, no. 16, article e126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. M. G. I. Langille, W. W. L. Hsiao, and F. S. L. Brinkman, “Evaluation of genomic island predictors using a comparative genomics approach,” BMC Bioinformatics, vol. 9, article 329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Siguier, J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler, “ISfinder: the reference centre for bacterial insertion sequences,” Nucleic Acids Research, vol. 34, pp. D32–D36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Chen, P. Yu, J. Luo, and Y. Jiang, “Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT,” Mammalian Genome, vol. 14, no. 12, pp. 859–865, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. D. Bendtsen, H. Nielsen, G. Von Heijne, and S. Brunak, “Improved prediction of signal peptides: signalP 3.0,” Journal of Molecular Biology, vol. 340, no. 4, pp. 783–795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Fankhauser and P. Mäser, “Identification of GPI anchor attachment signals by a Kohonen self-organizing map,” Bioinformatics, vol. 21, no. 9, pp. 1846–1852, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Y. Yu, J. R. Wagner, M. R. Laird et al., “PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes,” Bioinformatics, vol. 26, no. 13, pp. 1608–1615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Xiao, Y. F. Sun, B. Lian, and T. M. Chen, “Complete genome sequence and comparative genome analysis of the Paenibacillus mucilaginosus K02,” Microbial Pathogenesis, vol. 93, pp. 194–203, 2016. View at Publisher · View at Google Scholar
  33. J. W. Choi, S. S. Yim, M. J. Kim, and K. J. Jeong, “Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements),” Microbial Cell Factories, vol. 14, no. 1, article 207, 2015. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Ooka, Y. Ogura, M. Asadulghani et al., “Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes,” Genome Research, vol. 19, no. 10, pp. 1809–1816, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. R. Beuzón, D. Chessa, and J. Casadesús, “IS200: an old and still bacterial transposon,” International Microbiology, vol. 7, no. 1, pp. 3–12, 2004. View at Google Scholar · View at Scopus
  36. T. Sekizuka, M. Kai, K. Nakanaga et al., “Complete genome sequence and comparative genomic analysis of Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus group reveal a conserved genomic island MmGI-1 related to putative lipid metabolism,” PLoS ONE, vol. 9, no. 12, Article ID e114848, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Hollenstein, D. C. Frei, and K. P. Locher, “Structure of an ABC transporter in complex with its binding protein,” Nature, vol. 446, no. 7132, pp. 213–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Moussatova, C. Kandt, M. L. O'Mara, and D. P. Tieleman, “ATP-binding cassette transporters in Escherichia coli,” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1778, no. 9, pp. 1757–1771, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. Grunden and K. T. Shanmugam, “Molybdate transport and regulation in bacteria,” Archives of Microbiology, vol. 168, no. 5, pp. 345–354, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Ma, J. W. Guo, R. Bade, Z. H. Men, and A. Hasi, “Genome-wide identification and phylogenetic analysis of the SBP-box gene family in melons,” Genetics and Molecular Research, vol. 13, no. 4, pp. 8794–8806, 2014. View at Publisher · View at Google Scholar · View at Scopus