Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2016, Article ID 7604641, 11 pages
http://dx.doi.org/10.1155/2016/7604641
Research Article

Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

1School of Software, Tianjin University, Tianjin, China
2School of Computer Science and Technology, Tianjin University, Tianjin, China
3School of Information Science and Technology, Xiamen University, Xiamen, China
4College of Information Engineering, China Jiliang University, Hangzhou, Zhejiang, China
5School of Computer Science and Technology, Heilongjiang University, Harbin, China
6State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China

Received 18 April 2016; Revised 24 May 2016; Accepted 14 June 2016

Academic Editor: Qin Ma

Copyright © 2016 Jieru Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. Schäffer, L. Aravind, T. L. Madden et al., “Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements,” Nucleic Acids Research, vol. 29, no. 14, pp. 2994–3005, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. D. Finn, J. Clements, and S. R. Eddy, “HMMER web server: interactive sequence similarity searching,” Nucleic Acids Research, vol. 39, no. 2, Article ID gkr367, pp. W29–W37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Zou, Q. Hu, M. Guo, and G. Wang, “HAlign: fast multiple similar DNA/RNA sequence alignment based on the centre star strategy,” Bioinformatics, vol. 31, no. 15, pp. 2475–2481, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Chen, P. Feng, and H. Lin, “Prediction of ketoacyl synthase family using reduced amino acid alphabets,” Journal of Industrial Microbiology and Biotechnology, vol. 39, no. 4, pp. 579–584, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Zou, Y. Mao, L. Hu, Y. Wu, and Z. Ji, “miRClassify: an advanced web server for miRNA family classification and annotation,” Computers in Biology and Medicine, vol. 45, no. 1, pp. 157–160, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Chen and H. Lin, “Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine,” Computers in Biology and Medicine, vol. 42, no. 4, pp. 504–507, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Song, L. Pan, J. Wang, I. Venkat, K. G. Subramanian, and R. Abdullah, “Normal forms of spiking neural P systems with anti-spikes,” IEEE Transactions on Nanobioscience, vol. 11, no. 4, pp. 352–359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Lin and W. Chen, “Prediction of thermophilic proteins using feature selection technique,” Journal of Microbiological Methods, vol. 84, no. 1, pp. 67–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zhao, Q. Zou, B. Liu, and X. Liu, “Exploratory predicting protein folding model with random forest and hybrid features,” Current Proteomics, vol. 11, no. 4, pp. 289–299, 2014. View at Google Scholar · View at Scopus
  10. L. Song, D. Li, X. Zeng, Y. Wu, L. Guo, and Q. Zou, “nDNA-prot: identification of DNA-binding proteins based on unbalanced classification,” BMC Bioinformatics, vol. 15, article 298, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Lin, W. Chen, C. Qiu, Y. Wu, S. Krishnan, and Q. Zou, “LibD3C: ensemble classifiers with a clustering and dynamic selection strategy,” Neurocomputing, vol. 123, pp. 424–435, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Lin, Y. Zou, J. Qin et al., “Hierarchical classification of protein folds using a novel ensemble classifier,” PLoS ONE, vol. 8, no. 2, Article ID e56499, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Wang, M. Ying, and C. Minquan, “Finding motifs in DNA sequences using low-dispersion sequences,” Journal of Computational Biology, vol. 21, no. 4, pp. 320–329, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. X. Zhang, L. Pan, and A. Păun, “On the universality of axon P systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 11, pp. 2816–2829, 2015. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. X. Zhang, Y. Liu, B. Luo, and L. Pan, “Computational power of tissue P systems for generating control languages,” Information Sciences, vol. 278, pp. 285–297, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. X. Zeng, L. Xu, X. Liu, and L. Pan, “On languages generated by spiking neural P systems with weights,” Information Sciences, vol. 278, pp. 423–433, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. J. X. Tao Song and L. Pan, “Spiking neural P systems with request rules,” Neurocomputing, vol. 193, pp. 193–200, 2016. View at Publisher · View at Google Scholar
  18. T. Song, J. Xu, and L. Pan, “On the universality and non-universality of spiking neural P systems with rules on synapses,” IEEE Transactions on Nanobioscience, vol. 14, no. 8, pp. 960–966, 2015. View at Publisher · View at Google Scholar
  19. X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach to nondominated sorting for evolutionary multiobjective optimization,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 201–213, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. T. Xingyi Zhang and Y. Jin, “A knee point driven evolutionary algorithm for many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 6, pp. 761–776, 2015. View at Publisher · View at Google Scholar
  21. B. Liu, F. Liu, X. Wang, J. Chen, L. Fang, and K. Chou, “Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences,” Nucleic Acids Research, vol. 43, no. W1, pp. W65–W71, 2015. View at Publisher · View at Google Scholar
  22. B. Liu, S. Wang, and X. Wang, “DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation,” Scientific Reports, vol. 5, article 15479, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Lin, W. Chen, L.-F. Yuan, Z.-Q. Li, and H. Ding, “Using over-represented tetrapeptides to predict protein submitochondria locations,” Acta Biotheoretica, vol. 61, no. 2, pp. 259–268, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Ding, S.-H. Guo, E.-Z. Deng et al., “Prediction of Golgi-resident protein types by using feature selection technique,” Chemometrics and Intelligent Laboratory Systems, vol. 124, pp. 9–13, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Chen and H. Lin, “Prediction of midbody, centrosome and kinetochore proteins based on gene ontology information,” Biochemical and Biophysical Research Communications, vol. 401, no. 3, pp. 382–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Ding, P.-M. Feng, W. Chen, and H. Lin, “Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis,” Molecular BioSystems, vol. 10, no. 8, pp. 2229–2235, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Cai, T. Huang, L. Hu, X. Shi, L. Xie, and Y. Li, “Prediction of lysine ubiquitination with mRMR feature selection and analysis,” Amino Acids, vol. 42, no. 4, pp. 1387–1395, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Huang, L. Lu, K. Feng et al., “Prediction of S-nitrosylation modification sites based on kernel sparse representation classification and mRMR algorithm,” BioMed Research International, vol. 2014, Article ID 438341, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Zou, J. Zeng, L. Cao, and R. Ji, “A novel features ranking metric with application to scalable visual and bioinformatics data classification,” Neurocomputing, vol. 173, pp. 346–354, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Song and L. Pan, “Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy,” IEEE Transactions on Nanobioscience, vol. 14, no. 1, pp. 37–43, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Kumar, B. Panwar, J. S. Chauhan, and G. P. Raghava, “Analysis and prediction of cancerlectins using evolutionary and domain information,” BMC Research Notes, vol. 4, article 237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Damodaran, J. Jeyakani, A. Chauhan, N. Kumar, N. R. Chandra, and A. Surolia, “CancerLectinDB: adatabase of lectins relevant to cancer,” Glycoconjugate Journal, vol. 25, no. 3, pp. 191–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Z. Cai, L. Y. Han, Z. L. Ji, X. Chen, and Y. Z. Chen, “SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence,” Nucleic Acids Research, vol. 31, no. 13, pp. 3692–3697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Xiao, D.-S. Cao, M.-F. Zhu, and Q.-S. Xu, “Protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences,” Bioinformatics, vol. 31, no. 11, pp. 1857–1859, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. T. L. Bailey, M. Boden, F. A. Buske et al., “MEME Suite: tools for motif discovery and searching,” Nucleic Acids Research, vol. 37, no. 2, pp. W202–W208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002. View at Google Scholar · View at Scopus
  37. J. Shen, J. Zhang, X. Luo et al., “Predicting protein-protein interactions based only on sequences information,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 11, pp. 4337–4341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Wang and X. Hu, “Accurate prediction of nuclear receptors with conjoint triad feature,” BMC Bioinformatics, vol. 16, no. 1, article 402, pp. 1–13, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Liu, X. Wang, Q. Zou, Q. Dong, and Q. Chen, “Protein remote homology detection by combining chou's pseudo amino acid composition and profile-based protein representation,” Molecular Informatics, vol. 32, no. 9-10, pp. 775–782, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Liu, J. Xu, X. Lan et al., “iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition,” PLoS ONE, vol. 9, no. 9, Article ID e106691, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Wang, Y. Xu, and B. Liu, “Recombination spot identification based on gapped k-mers,” Scientific Reports, vol. 6, article 23934, 2016. View at Publisher · View at Google Scholar
  43. J. Zeng, D. Li, Y. Wu, Q. Zou, and X. Liu, “An empirical study of features fusion techniques for protein-protein interaction prediction,” Current Bioinformatics, vol. 11, no. 1, pp. 4–12, 2016. View at Publisher · View at Google Scholar
  44. Q. Zou, J. Li, C. Wang, and X. Zeng, “Approaches for recognizing disease genes based on network,” BioMed Research International, vol. 2014, Article ID 416323, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Zeng, X. Zhang, and Q. Zou, “Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks,” Briefings in Bioinformatics, vol. 17, no. 2, pp. 193–203, 2016. View at Publisher · View at Google Scholar
  46. Q. Zou, J. Li, Q. Hong et al., “Prediction of microRNA-disease associations based on social network analysis methods,” BioMed Research International, vol. 2015, Article ID 810514, 9 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Zeng, X. Zhang, Y. Liao, and L. Pan, “Prediction and validation of association between microRNAs and diseases by multipath methods,” Biochimica et Biophysica Acta (BBA)—General Subjects, 2016. View at Publisher · View at Google Scholar
  48. Q. Zou, J. Li, L. Song, X. Zeng, and G. Wang, “Similarity computation strategies in the microRNA-disease network: a survey,” Briefings in Functional Genomics, vol. 15, no. 1, pp. 55–64, 2016. View at Publisher · View at Google Scholar
  49. X. Zeng, Y. Liao, y. Liu, and Q. Zou, “Prediction and validation of disease genes using HeteSim Scores,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, no. 99, p. 1, 2016. View at Publisher · View at Google Scholar
  50. C. Yang, D. Wu, L. Gao et al., “Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives,” Oncotarget, vol. 7, no. 12, pp. 13479–13490, 2016. View at Publisher · View at Google Scholar
  51. J. Chen, X. Wang, and B. Liu, “iMiRNA-SSF: improving the identification of microrna precursors by combining negative sets with different distributions,” Scientific Reports, vol. 6, article 19062, 2016. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Wu, Y. Huang, J. Kang et al., “ncRDeathDB: a comprehensive bioinformatics resource for deciphering network organization of the ncRNA-mediated cell death system,” Autophagy, vol. 11, no. 10, pp. 1917–1926, 2015. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Liu, X. Zeng, Z. He, and Q. Zou, “Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016. View at Publisher · View at Google Scholar
  54. Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, and K. Chen, “Survey of MapReduce frame operation in bioinformatics,” Briefings in Bioinformatics, vol. 15, no. 4, pp. 637–647, 2014. View at Publisher · View at Google Scholar · View at Scopus