Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2017, Article ID 2413150, 8 pages
https://doi.org/10.1155/2017/2413150
Research Article

Genetic Diversity and Association Analysis for Solvent Retention Capacity in the Accessions Derived from Soft Wheat Ningmai 9

Provincial Key Lab for Agrobiology, Jiangsu Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, 50 Zhongling Street, Nanjing, Jiangsu 210014, China

Correspondence should be addressed to Hong-Xiang Ma; nc.ca.saaj@amxh

Received 2 August 2016; Revised 14 October 2016; Accepted 16 January 2017; Published 5 February 2017

Academic Editor: Mihai Miclăuș

Copyright © 2017 Peng Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Solvent retention capacity (SRC) test is an effective method for quality evaluation of soft wheat. Ningmai 9 is a founder in soft wheat breeding. The SRC and genotype of Ningmai 9 and its 117 derivatives were tested. Association mapping was employed to identify the quantitative trait loci (QTL) associated with SRCs. Ningmai 9 had the allele frequency of 75.60% and 67.81% to its first- and second-generation derivatives, respectively, indicating higher contribution than theoretical expectation. Neighbor-joining cluster based on the genotyping data showed that Ningmai 9 and most of its first-generation derivatives were clustered together, whereas its second-generation derivatives were found in another group. The variation coefficients of SRCs in the derivatives ranged from 5.35% to 8.63%. A total of 29 markers on 13 chromosomes of the genome were associated with the SRCs. There were 6 markers associated with more than one SRC or detected in two years. The results suggested that QTL controlling SRCs in Ningmai 9 might be different from other varieties. Markers Xgwm44, Xbarc126, Xwmc790, and Xgwm232 associated with SRCs in Ningmai 9 might be used for quality improvement in soft wheat breeding.