Review Article

Aquatic Plant Genomics: Advances, Applications, and Prospects

Table 1

Summary of the genomics studies and technologies correlated to aquatic plant species discussed in the review.

Genomics studiesSpeciesApplications

Molecular markers
SSRSparganium emersum [8], Ruppia cirrhosa [9], Euryale ferox [10], Nymphoides peltata [11, 12]Genetic diversity analysis
Cabomba aquatic [18], Nelumbon ucifera [19]Phylogenetic analysis
AFLPUtricularia australis [13]Genetic diversity analysis
Nelumbon ucifera [19]Phylogenetic analysis
Potamogeton ×maëmetsiae [22], Potamogeton clystocarpus [23]Germplasm identification
ISSRRanunculus nipponicus [14], Alternanthera philoxeroides [16], Euryale ferox [17]Genetic structure
EST-SSRNymphoides peltata [15]Genetic diversity and structure
RAPDAlternanthera philoxeroides [16], Euryale ferox [17]Genetic diversity
Nuclear, chloroplast, and mitochondrial markersHydrocharitaceae(family) [20]Phylogenetic analysis
Potamogeton ×maëmetsiae [22], Potamogeton clystocarpus [23]Germplasm identification
Plastid markersVeronica sect. Beccabunga [21]Phylogenetic and taxonomic analysis

Comparative genomics
Interspecies comparative genomicsUtricularia gibba [24, 25]Gene family classification and functional gene prediction
Adaptive molecular evolution analysis
Spirodela [26]
Phaeodactylum tricornutum [30]

Functional genomics
PCR approachHydrilla verticillata [31]Identify elements necessary for C4 system
Potamogeton [37]Identify HSFA2 and its putative target gene CP-sHSP
Ceratophyllum demersum [85]Identify the role of CdPCS1 in biosynthesis of PC
Lemna gibba [50]Elucidate the molecular responses stimulated by excess copper exposure
Specific probes from 3-UTRLemna gibba [33]Analyze the expression of the six rbcS genes in different organs
RACESagittaria graminea [34]Analyze two RCA genes(SGrca1 and SGrca2) expression pattern
Gene mining methodEichhornia crassipes [51]Isolate genes involving low-sulfur tolerance to understand the mechanism of high efficiency nutrient acquisition and utilization

Genome/transcriptome sequencing
Chloroplast genomeNuphar advena [53], Najas flexilis [54], Elodea canadensis [55], Lemna minor [57], Utricularia foliosa [56], Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana [58]Important source of genetic markers for phylogenetic analysis
Identify functional coding regions and sequence outside of coding regions
Chloroplast transformation for genetic engineering
Evolution of chloroplast genomes
Mitochondrial genomeSpirodela polyrhiza [60], Butomus umbellatus [61]Study the evolution of monocot mitochondrial genomes
Whole genomeSpirodela polyrhiza [62]Stimulate new insights into environmental adaptation, ecology, evolution, and plant development
Future bioenergy applications
Nelumbo nucifera [63]Study the evolutionary history of the genome and genes involved in relevant processes governing the unique features
Lemna minor [64]Understand the biological and molecular mechanisms in L. minor
Facilitate future genetically improvements and biomass production applications of duckweed species
TranscriptomeUtricularia vulgaris [65, 66]Identify gene losses and duplications during the course of evolution
Study adaptations related to the environment and carnivorous habit and evolutionary processes responsible for considerable genome reduction
Ranunculus bungei [67]Study the molecular adaptive mechanism from terrestrial to aquatic habitats
Nasturtium officinale [68], Oenanthe javanica [69]Annotate function genes
Promote the studies of medicinal properties and corresponding pathways
MicroRNANelumbo nucifera [70, 71]Identify conserved microRNAs and their target genes