Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2017 (2017), Article ID 6542075, 11 pages
https://doi.org/10.1155/2017/6542075
Research Article

Comparative Proteomic Analysis of Paulownia fortunei Response to Phytoplasma Infection with Dimethyl Sulfate Treatment

1Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China
2College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China

Correspondence should be addressed to Guoqiang Fan

Received 17 February 2017; Revised 1 August 2017; Accepted 9 August 2017; Published 5 September 2017

Academic Editor: Marco Gerdol

Copyright © 2017 Zhen Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Hogenhout, K. Oshima, E. D. Ammar, S. Kakizawa, H. N. Kingdom, and S. Namba, “Phytoplasmas: bacteria that manipulate plants and insects,” Molecular Plant Pathology, vol. 9, no. 4, pp. 403–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. L. Bayliss, M. Saqib, B. Dell, M. G. K. Jones, and G. E. S. J. Hardy, “First record of ‘Candidatus Phytoplasma australiense’ in Paulownia trees,” Australasian Plant Pathology, vol. 34, no. 1, pp. 123-124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Namba, “Molecular biological studies on phytoplasmas,” Journal of General Plant Pathology, vol. 68, no. 3, pp. 257–259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. X. L. Ji, Y. P. Gai, C. C. Zheng, and Z. M. Mu, “Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.),” Proteomics, vol. 9, no. 23, pp. 5328–5339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. P. Gai, X. J. Han, L. I. Yi-Qun et al., “Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease,” Plant Cell & Environment, vol. 37, no. 6, pp. 1474–1490, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. P. Gai, Y. Q. Li, F. Y. Guo et al., “Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease,” Scientific Reports, vol. 4, p. 5378, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Y. Yang, Y. H. Huang, C. P. Lin et al., “MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptoms1 effector,” Plant Physiology, vol. 168, no. 4, pp. 1702–1716, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Y. Liu, H. I. Tseng, C. P. Lin et al., “High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection,” Plant & Cell Physiology, vol. 55, no. 5, pp. 942–957, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Ehya, A. Monavarfeshani, F. E. Mohseni et al., “Phytoplasma-responsive microRNAs modulate hormonal, nutritional, and stress signalling pathways in Mexican lime trees,” PLoS One, vol. 8, no. 6, article e66372, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hren, P. Nikolić, A. Rotter et al., “‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine,” BMC Genomics, vol. 10, no. 10, p. 460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Zhao, Z. Zhao, G. Fan, and X. Cao, “Effects of dimethyl sulphonate on the morphological changes of Paulownia fortunei seedlings with witches’ broom and their DNA base sequences,” Journal of Henan Agricultural University, vol. 45, no. 3, pp. 287–291, 2011. View at Google Scholar
  12. X. Cao, G. Fan, M. Deng, Z. Zhao, and Y. Dong, “Identification of genes related to Paulownia witches’ broom by AFLP and MSAP,” International Journal of Molecular Sciences, vol. 15, no. 8, pp. 14669–14683, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Fan, Y. Dong, M. Deng, Z. Zhao, S. Niu, and E. Xu, “Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei,” International Journal of Molecular Sciences, vol. 15, no. 12, pp. 23141–23162, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Fan, H. Peng, X. Zhai, X. Ma, and J. Jiang, “Protein polymorphism of Paulownia leaves and its cluster analysis,” Chinese Bulletin of Botany, vol. 12, no. 6, pp. 739–743, 2001. View at Google Scholar
  15. G. Fan, X. Cao, S. Niu, M. Deng, Z. Zhao, and Y. Dong, “Transcriptome, microRNA, and degradome analyses of the gene expression of Paulownia with phytoplamsa,” BMC Genomics, vol. 16, no. 1, pp. 1–15, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Mou, J. Lu, S. Zhu et al., “Transcriptomic analysis of Paulownia infected by Paulownia witches’-broom phytoplasma,” PLoS One, vol. 8, no. 10, article e77217, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Niu, G. Fan, M. Deng, Z. Zhao, E. Xu, and L. Cao, “Discovery of microRNAs and transcript targets related to witches’ broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach,” Molecular & General Genetics, vol. 291, pp. 181–191, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Fan, E. Xu, M. Deng, Z. Zhao, and S. Niu, “Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to Paulownia witches’ broom phytoplasma infection,” Genes & Genomics, vol. 37, no. 11, pp. 913–929, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Luge, M. Kube, A. Freiwald, D. Meierhofer, E. Seemuller, and S. Sauer, “Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by Candidatus Phytoplasma mali strain AT,” Proteomics, vol. 14, no. 16, pp. 1882–1889, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Mertins, N. D. Udeshi, K. R. Clauser et al., “iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics,” Molecular & Cellular Proteomics, vol. 11, no. 6, pp. 1377–1391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Shi, X. Wang, D. X. Tan, R. J. Reiter, and Z. Chan, “Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.),” Journal of Pineal Research, vol. 59, no. 1, pp. 120–131, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Trevisan, A. Manoli, L. Ravazzolo et al., “Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey,” Journal of Experimental Botany, vol. 66, no. 13, p. 17, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Wu, Z. Xu, Y. Zhang, L. Chai, H. Yi, and X. Deng, “An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus,” Journal of Experimental Botany, vol. 65, no. 6, pp. 1651–1671, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Fan, Z. Feng, X. Zhai, Y. Cao, Z. Dong, and J. Jiang, “Effects of plant growth regulators on morphological and content changes of proteins of witches’ broom of Paulownia seedlings,” Journal of Henan Agricultural University, vol. 40, no. 2, pp. 137–141, 2006. View at Google Scholar
  25. Z. Tang, W. Du, X. L. Du, Y. Y. Ban, and J. L. Cheng, “iTRAQ protein profiling of adventitious root formation in mulberry hardwood cuttings,” Journal of Plant Growth Regulation, vol. 35, no. 3, pp. 618–631, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Analytical Biochemistry, vol. 72, pp. 248–254, 1976. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Meng, L. Hou, Y. Zhao et al., “iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes,” Fish & Shellfish Immunology, vol. 40, no. 1, pp. 182–189, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Dong, M. Deng, Z. Zhao, and G. Fan, “Quantitative proteomic and transcriptomic study on autotetraploid Paulownia and its diploid parent reveal key metabolic processes associated with Paulownia autotetraploidization,” Frontiers in Plant Science, vol. 7, 2016. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Qiao, J. Wang, L. Chen et al., “Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803,” Journal of Proteome Research, vol. 11, no. 11, pp. 5286–5300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. I. M. Lee, R. W. Hammond, R. E. Davis, and D. E. Gundersen, “Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms,” Phytopathology, vol. 83, no. 8, pp. 834–842, 1993. View at Google Scholar
  31. M. Li, X. Zhai, G. Fan, B. Zhang, and F. Liu, “Effect of oxytetracycline on the morphology of seedling with witches’ broom and DNA methylation level of Paulownia tomentosa × P. fortunei,” Scientia Silvae Sinicae, vol. 9, no. 44, pp. 152–156, 2008. View at Google Scholar
  32. A. Monavarfeshani, M. Mirzaei, E. Sarhadi et al., “Shotgun proteomic analysis of the Mexican lime tree infected with “CandidatusPhytoplasma aurantifolia”,” Journal of Proteome Research, vol. 12, no. 2, pp. 785–795, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Margaria and S. Palmano, “Response of the Vitis vinifera L. cv. ‘Nebbiolo’ proteome to Flavescence doree phytoplasma infection,” Proteomics, vol. 11, no. 2, pp. 212–224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Streitwieser, C. H. Heathcock, E. M. Kosower, and P. J. Corfield, Introduction to Organic Chemistry, Macmillan, New York, NY, USA, 1992.
  35. M. Kube, B. Schneider, H. Kuhl et al., “The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’,” BMC Genomics, vol. 9, no. 1, pp. 1–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Oshima, S. Kakizawa, R. Arashida et al., “Presence of two glycolytic gene clusters in a severe pathogenic line of Candidatus Phytoplasma asteris,” Molecular Plant Pathology, vol. 8, no. 4, pp. 481–489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Maclean, A. Sugio, O. V. Makarova et al., “Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants,” Plant Physiology, vol. 157, no. 2, pp. 831–841, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Musetti, K. Farhan, F. D. Marco et al., “Differentially-regulated defence genes in Malus domestica during phytoplasma infection and recovery,” European Journal of Plant Pathology, vol. 136, no. 1, pp. 13–19, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Shpigelman, Y. Paz, O. Ramon, and Y. D. Livney, “Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 48, pp. E1254–E1263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Oshima, S. Kakizawa, H. Nishigawa et al., “Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma,” Nature Genetics, vol. 36, no. 1, pp. 27–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Fares, M. Rossignol, and J. B. Peltier, “Proteomics investigation of endogenous S-nitrosylation in Arabidopsis,” Biochemical and Biophysical Research Communications, vol. 416, no. 3-4, pp. 331–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Xu, C. Dubos, and L. Lepiniec, “Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes,” Trends in Plant Science, vol. 20, no. 3, pp. 176–185, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. C. A. Rive-Evans and N. J. Miller, “Structure-antioxidant activity relationships of flavonoids and isoflavonoids,” ChemInform, vol. 29, pp. 199–219, 1998. View at Google Scholar
  44. Nuoendagula, N. Kamimura, T. Mori et al., “Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana,” Plant Cell Reports, vol. 35, no. 3, pp. 513–526, 2016. View at Publisher · View at Google Scholar · View at Scopus
  45. J. J. Koskimaki, J. Hokkanen, L. Jaakola et al., “Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress,” European Journal of Plant Pathology, vol. 125, no. 4, pp. 629–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Khuri, F. T. Bakker, and J. M. Dunwell, “Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins,” Molecular Biology and Evolution, vol. 18, no. 4, pp. 593–605, 2001. View at Publisher · View at Google Scholar
  47. K. Kosová, P. Vítámvás, S. Planchon, J. Renaut, R. Vanková, and I. T. Prášil, “Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits,” Journal of Proteome Research, vol. 12, no. 11, pp. 4830–4845, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Ohmiya, M. Kikuchi, S. Sakai, and T. Hayashi, “Purification and properties of an auxin-binding protein from the shoot apex of peach tree,” Plant & Cell Physiology, vol. 34, no. 2, pp. 177–183, 1993. View at Publisher · View at Google Scholar
  49. A. Ohmiya, Y. Tanaka, K. Kadowaki, and T. Hayashi, “Cloning of genes encoding auxin-binding proteins (ABP19/20) from peach: significant peptide sequence similarity with germin-like proteins,” Plant & Cell Physiology, vol. 39, no. 5, pp. 492–499, 1998. View at Publisher · View at Google Scholar