Article of the Year 2021
Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress
Read the full article
Journal profile
International Journal of Genomics publishes papers in all areas of genome-scale analysis, including bioinformatics, clinical and disease genomics, epigenomics, evolutionary and functional genomics, genome engineering, and synthetic genomics.
Editor spotlight
International Journal of Genomics maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.
Special Issues
Latest Articles
More articlesDetection of Complement C1q B Chain Overexpression and Its Latent Molecular Mechanisms in Cervical Cancer Tissues Using Multiple Methods
Aim. The aim of this study is to demonstrate the expression and clinicopathological significance of complement C1q B chain (C1QB) in cervical cancer. Methods. In total, 120 cervical cancer tissues, as well as 20 samples each of high-grade squamous intraepithelial lesions (HSILs), low-grade squamous intraepithelial lesions (LSILs), and benign cervical tissue, were collected to evaluate the expression of C1QB protein via immunohistochemical staining. We conducted an integrated analysis of C1QB mRNA expression in cervical cancer using public microarrays and RNA-seq data sets by calculating standard mean differences (SMDs). Simultaneously, we explored the relations of C1QB with clinicopathological parameters and the expression of P16, Ki-67, and P53. Results. The expression of C1QB protein was higher in cervical cancer samples than that in benign cervical tissue, LSIL, and HSIL samples (). A combined SMD of 0.65 (95% CI: [0.52, 0.79], ) revealed upregulation of C1QB mRNA in cervical cancer. C1QB expression may also be related to the depth of infiltration, lymphovascular invasion, and perineural invasion in cervical cancer (). We also found that C1QB protein expression was positively correlated with P16 and Ki-67 expression in cervical cancer (). The gene set enrichment analysis showed that C1QB may participate in apoptosis and autophagy. A relationship was predicted between C1QB expression and drug sensitivity to cisplatin, paclitaxel, and docetaxel. Conclusion. We confirmed the overexpression of C1QB in cervical cancer at both mRNA and protein levels for the first time. C1QB may serve as an oncogene in the tumorigenesis of cervical cancer, but this possibility requires further study.
Comparison of In Silico Tools for Splice-Altering Variant Prediction Using Established Spliceogenic Variants: An End-User’s Point of View
Assessing the impact of variants of unknown significance on splicing has become a critical issue and a bottleneck, especially with the widespread implementation of whole-genome or exome sequencing. Although multiple in silico tools are available, the interpretation and application of these tools are difficult and practical guidelines are still lacking. A streamlined decision-making process can facilitate the downstream RNA analysis in a more efficient manner. Therefore, we evaluated the performance of 8 in silico tools (Splice Site Finder, MaxEntScan, Splice-site prediction by neural network, GeneSplicer, Human Splicing Finder, SpliceAI, Splicing Predictions in Consensus Elements, and SpliceRover) using 114 NF1 spliceogenic variants, experimentally validated at the mRNA level. The change in the predicted score incurred by the variant of the nearest wild-type splice site was analyzed, and for type II, III, and IV splice variants, the change in the prediction score of de novo or cryptic splice site was also analyzed. SpliceAI and SpliceRover, tools based on deep learning, outperformed all other tools, with AUCs of 0.972 and 0.924, respectively. For de novo and cryptic splice sites, SpliceAI outperformed all other tools and showed a sensitivity of 95.7% at an optimal cut-off of 0.02 score change. Our results show that deep learning algorithms, especially those of SpliceAI, are validated at a significantly higher rate than other in silico tools for clinically relevant NF1 variants. This suggests that deep learning algorithms outperform traditional probabilistic approaches and classical machine learning tools in predicting the de novo and cryptic splice sites.
ALDH1A3–Linc00284 Axis Mediates the Invasion of Colorectal Cancer by Targeting TGFβ Signaling via Sponging miR-361-5p
ALDH1A3 and Linc00284 involve in colorectal cancer (CRC) development; however, the regulatory mechanism is still unclear. In this study, we collected clinicopathological characteristics and tissue samples from 73 CRC patients to analyze the expression of ALDH1A3, Linc00284, TGFβ signaling and miR-361-5p using qPCR, Western blotting, and ELISA. Multiple CRC cell lines were evaluated in this study, and the highest level of ALDH1A3 was observed in SW480 cells. To investigate the regulatory mechanism, RIP and luciferase assays were used to validate the interaction between Linc00284, miR-361-5p, and TGFβ. Proliferation, viability, migration, and invasion assays were performed to profile the effects of the ALDH1A3–Linc00284 axis in CRC cell functions, which was upregulated in CRC tissues. Knockdown ALDH1A3 or Linc00284 significantly reduced TGFβ expression and suppressed the EMT process, while overexpression had opposite effects. miR-361-5p targeted TGFβ directly, which negatively correlated with ALDH1A3–Linc00284 expression and CRC progression. Mechanistically, upregulation of ALDH1A3–Linc00284 promotes colorectal cancer invasion and migration by regulating miR-361-5p/TGFβ signaling pathway. Dysregulation of the ALDH1A3–Linc00284-miR-361-5p-TGFβ axis causes CRC invasion, which might provide a new insight into the treatment of CRC.
Identification of Differentially Expressed microRNAs Associated with Ischemic Stroke by Integrated Bioinformatics Approaches
Ischemic stroke (IS) is one of the leading causes of disability and mortality worldwide. This study aims to find the crucial exosomal miRNAs associated with IS by using bioinformatics methods, reveal potential biomarkers for IS, and investigate the association between the identified biomarker and immune cell pattern in the peripheral blood of IS patients. In this study, 3 up-regulated miRNAs (hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p) miRNAs in the serum exosomes between IS patients and healthy controls from GEO database (GSE199942) and 25 down-regulated genes of peripheral blood mononuclear cells of IS patients from GSE22255 were obtained with the help of the R software. GO annotation and KEGG pathway enrichment analysis showed that the 25 down-regulated genes were associated with coenzyme metabolic process and were mainly enriched in the N-glycan biosynthesis pathway. Furthermore, we performed the LASSO algorithm to narrow down the above 25 intersected genes, and identified 8 key genes which had a good diagnostic value in discriminating IS patients from the healthy controls analyzed with ROC curve. CIBERSORT algorithm indicated that the abundance of M0 macrophages and resting mast cells was significantly lower than that of the control group. The spearman correlation analysis showed that STT3A was negatively correlated with the proportion of follicular helper T cells, activated NK cells and resting dendritic cells. Finally, GSE117064 showed that has-miR-16-5p was more advantageous for diagnosing stroke. In conclusion, hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p are identified as specific related exosomal miRNAs for IS patients. These genes may provide new targets for the early identification of IS.
Expression Profiles of Differentially Expressed Circular RNAs and circRNA–miRNA–mRNA Regulatory Networks in SH-SY5Y Cells Infected with Coxsackievirus B5
Coxsackievirus B5 (CVB5) is the causative agent of hand, foot, and mouth disease (HFMD) that can cause neurological complications and fatalities. Circular RNA (circRNA) has been shown to play an important role in regulating pathogenic processes. However, the functions of circRNA in response to CVB5 infection remain unclear. In our research, RNA-seq was employed to analyze the expression profiles of circRNAs in SH-SY5Y cells with or without CVB5 infection. Out of 5,665 circRNAs identified to be expressed in SH-SY5Y cells, 163 circRNAs were found to be differentially expressed significantly. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially expressed circRNAs were mainly involved in ubiquitin-mediated proteolysis and signaling pathways during CVB5 infection. Additionally, RT-qPCR was used to validate the RNA-seq data, and a circRNA–miRNA–mRNA interaction network was constructed based on two circRNAs, such as hsa_circ_0008378 and novel_circ_0014617, which were associated with the regulation of innate immune response in host cells. Additionally, we confirmed the two circRANs up-regulated the key factors in the IFN-I signaling pathway, hampering viral replication. Our data provide a new perspective that facilitates further understanding of the virus-host mechanism.
LncRNA BANCR Promotes Endometrial Stromal Cell Proliferation and Invasion in Endometriosis via the miR-15a-5p/TRIM59 Axis
Long non-coding RNA (LncRNA) emerges as a regulator in various diseases, including endometriosis (EM). This study aims to uncover the role of long non-coding RNA BRAF-activated non-protein coding RNA (lncRNA BANCR)-mediated competing endogenous RNA mechanism in endometrial stromal cell (ESC) proliferation and invasion in EM by regulating miR-15a-5p/TRIM59. ESCs were isolated from eutopic and ectopic endometrial tissues, followed by the determination of Cytokeratin 19 and Vimentin expressions in cells. Then, expressions of lncRNA BANCR, microRNA (miR)-15a-5p, and tripartite motif-containing 59 (TRIM59) in tissues and cells were determined by real-time quantitative polymerase chain reaction or Western blot assay, and cell proliferation and invasion were evaluated by cell counting kit-8 and transwell assays. After that, the subcellular localization of lncRNA BANCR and binding of miR-15a-5p to lncRNA BANCR or TRIM59 were analyzed. LncRNA BANCR was upregulated in ectopic endometrial tissues and ectopic ESCs (Ect-ESCs). Silencing lncRNA BANCR suppressed Ect-ESC proliferation and invasion. LncRNA BANCR inhibited miR-15a-5p to promote TRIM59 expression. miR-15a-5p downregulation or TRIM59 overexpression both reversed the effects of silencing lncRNA BANCR on Ect-ESC proliferation and invasion. In summary, our findings suggested that lncRNA BANCR facilitated Ect-ESC proliferation and invasion by inhibiting miR-15a-5p and promoting TRIM59.