Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2009, Article ID 607458, 8 pages
http://dx.doi.org/10.1155/2009/607458
Research Article

A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate

1CONICET, Universidad Nacional de San Juan, IGSV-Métodos Potenciales, San Juan CP. 5400, Argentina
2Department of Earth Sciences, University Trieste, Via Weiss 1, 34100 Trieste, Italy
3CONICET, Universidad Nacional de Rosario, Rosario CP. 2000, Argentina

Received 18 December 2008; Revised 3 April 2009; Accepted 4 June 2009

Academic Editor: John F. Cassidy

Copyright © 2009 Mario E. Gimenez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Barazangi and B. Isacks, “Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America,” Geology, vol. 4, pp. 686–692, 1976. View at Google Scholar
  2. T. E. Jordan, B. L. Isacks, R. W. Allmendinger, J. A. Brewer, V. A. Ramos, and C. J. Ando, “Andean tectonics related to geometry of subducted Nazca plate,” Geological Society of America Bulletin, vol. 94, no. 3, pp. 341–361, 1983. View at Google Scholar
  3. T. Cahill and B. L. Isacks, “Seismicity and shape of the subducted Nazca Plate,” Journal of Geophysical Research, vol. 97, no. B12, pp. 17503–17529, 1992. View at Google Scholar
  4. M. Pardo, D. Comte, T. Monfret, R. Boroschek, and M. Astroza, “The October 15, 1997 Punitaqui earthquake (Mw=7.1): a destructive event within the subducting Nazca plate in the Central Chile,” Tectonophysics, vol. 345, no. 1–4, pp. 199–210, 2002. View at Publisher · View at Google Scholar
  5. M.-A. Gutscher, “Andean subduction styles and their effect on thermal structure and interplate coupling,” Journal of South American Earth Sciences, vol. 15, no. 1, pp. 3–10, 2002. View at Publisher · View at Google Scholar
  6. C. Hwang, E.-C. Kao, and B. Parsons, “Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/Poseidon altimeter data,” Geophysical Journal International, vol. 134, no. 2, pp. 449–459, 1998. View at Google Scholar
  7. M. Anderson, P. Alvarado, G. Zandt, and S. Beck, “Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina,” Geophysical Journal International, vol. 171, no. 1, pp. 419–434, 2007. View at Publisher · View at Google Scholar
  8. M. Regnier, J. L. Chatelain, R. Smalley Jr., J. M. Chiu, B. Isacks, and M. Araujo, “Crustal thickness variation in the Andean foreland, Argentina from converted waves,” Bulletin—Seismological Society of America, vol. 84, no. 4, pp. 1097–1111, 1994. View at Google Scholar
  9. R. Smalley Jr., J. Pujol, M. Regnier et al., “Basement seismicity beneath the Andean Precordillera thin-skinned thrust belt and implications for crustal and lithospheric behavior,” Tectonics, vol. 12, no. 1, pp. 63–76, 1993. View at Google Scholar
  10. S. Barrientos, E. Vera, P. Alvarado, and T. Monfret, “Crustal seismicity in central Chile,” Journal of South American Earth Sciences, vol. 16, no. 8, pp. 759–768, 2004. View at Publisher · View at Google Scholar
  11. B. Heit, X. Yuan, M. Bianchi, F. Sodoudi, and R. Kind, “Crustal thickness estimation beneath the southern central Andes at 30S and 36S from S wave receiver function analysis,” Geophysical Journal International, vol. 174, no. 1, pp. 249–254, 2008. View at Publisher · View at Google Scholar
  12. R. Fromm, G. Zandt, and S. L. Beck, “Crustal thickness beneath the Andes and Sierras Pampeanas at 30S inferred from Pn apparent phase velocities,” Geophysical Research Letters, vol. 31, no. 6, Article ID L06625, 4 pages, 2004. View at Google Scholar
  13. M. E. Gimenez, M. P. Martínez, and A. Introcaso, “A crustal model based mainly on gravity data in the area between the Bermejo Basin and the Sierras de Valle Fértil, Argentina,” Journal of South American Earth Sciences, vol. 13, no. 3, pp. 275–286, 2000. View at Publisher · View at Google Scholar
  14. J. A. Grow and C. O. Bowin, “Evidence for high-density crust and mantle beneath the Chile trench due to the descending lithosphere,” Journal of Geophysical Research, vol. 80, no. 11, pp. 1449–1458, 1975. View at Google Scholar
  15. R. F. Smalley and A. Introcaso, “Crustal and upper mantle structure in the Andean foreland of San Juan, Argentina,” Academia Nacional de Ciencias Exactas, Físicas y Naturales, vol. 53, pp. 13–25, 2003. View at Google Scholar
  16. A. Tassara, H.-J. Götze, S. Schmidt, and R. Hackney, “Three-dimensional density model of the Nazca plate and the Andean continental margin,” Journal of Geophysical Research B, vol. 111, no. 9, Article ID B09404, 2006. View at Publisher · View at Google Scholar
  17. A. Folguera, A. Introcaso, M. Giménez et al., “Crustal attenuation in the Southern Andean retroarc (38°-39°30' S) determined from tectonic and gravimetric studies: the Lonco-Luán asthenospheric anomaly,” Tectonophysics, vol. 439, no. 1–4, pp. 129–147, 2007. View at Publisher · View at Google Scholar
  18. M. E. Gimenez, Estudio genético y evolutivo de la Cuenca del Bermejo Provincia de San Juan) a partir de datos de gravedad, Tesis Doctoral, UNR, 1997.
  19. M. P. Martinez, Estudio del levantamiento de la Sierra de Valle Fértil. (Provincia de San Juan), Tesis Doctoral, Facultad de Ciencias Exactas e Ingeniería, Universidad Nacional de Rosario, Argentina, 1997.
  20. S. Miranda, Análisis e interpretación de la estructura profunda de la Sierra de Córdoba (Argentina) a partir de datos de gravedad, Tésis de Doctorado, Universidad Nacional de Rosario, Inédita, Argentina, 1998.
  21. P. Alvarado, S. Beck, G. Zandt, M. Araujo, and E. Triep, “Crustal deformation in the south-central Andes backarc terranes as viewed from regional broad-band seismic waveform modelling,” Geophysical Journal International, vol. 163, no. 2, pp. 580–598, 2005. View at Publisher · View at Google Scholar
  22. V. Ramos, “Terranes of southern Gondwanaland and their control in the Andean structure (3033S lat),” in Tectonics of the Southern Central Andes, Structure and Evolution of an Active Continental Margin, K. J. Reutter, E. Scheuber, and P. J. Wigger, Eds., pp. 249–261, Springer, Berlin, Germany, 1994. View at Google Scholar
  23. C. Rapela, “The Sierras Pampeanas of Argentina: Paleozoic building of the southern Proto-Andes,” in Tectonic Evolution of South America, U. G. Cordani, E. Milani, A. Filho, and D. Almeida Campos, Eds., pp. 381–386, Rio de Janeiro, Argentina, 2000. View at Google Scholar
  24. V. A. Ramos, E. O. Cristallini, and D. J. Pérez, “The Pampean flat-slab of the Central Andes,” Journal of South American Earth Sciences, vol. 15, no. 1, pp. 59–78, 2002. View at Publisher · View at Google Scholar
  25. V. A. Ramos, M. Cegarra, and E. Cristallini, “Cenozoic tectonics of the high Andes of west-central Argentina (30–36S latitude),” Tectonophysics, vol. 259, no. 1–3, pp. 185–200, 1996. View at Google Scholar
  26. B. Baldis, M. Beresi, O. Bordonaro, and A. Vaca, “Síntesis evolutiva de la Precordillera Argentina,” in Proceedings of the 5th Congreso Latinoamericano de Geología, vol. 4, pp. 399–445, 1982.
  27. T. E. Jordan, “Retroarc foreland and related basins,” in Tectonics of Sedimentary Basins, C. Busby and R. V. Ingersoll, Eds., chapter 9, Blackwell Scientific, Oxford, UK, 1995. View at Google Scholar
  28. M. P. Escayola, M. M. Pimentel, and R. Armstrong, “Neoproterozoic back-arc basin: sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges, Argentina,” Geology, vol. 35, pp. 495–498, 2007. View at Google Scholar
  29. C. W. Rapela, R. J. Pankhurst, C. Casquet et al., “The Río de la Plata craton and the assembly of SW Gondwana,” Earth-Science Reviews, vol. 83, no. 1-2, pp. 49–82, 2007. View at Publisher · View at Google Scholar
  30. R. Caminos, “Sierras Pampeanas Noroccidentales Salta, Tucuman, Catamarca, La Rioja y San Juan,” in Proceedings of the Simposio de Geología Regional Argentina, vol. 1, pp. 225–291, Academia Nacional de Ciencias, Rio de Janeiro, Argentina, 1979.
  31. P. E. Kraemer, M. P. Escayola, and R. D. Martino, “Hipótesis sobre la evolución tectónica neoproterozoica de las Sierras Pampeanas de Córdoba (3040S–3240S), Argentina,” Revista de la Asociación Geológica Argentina, vol. 50, no. 1–4, pp. 47–59, 1995. View at Google Scholar
  32. R. Varela, D. Roverano, and A. M. Sato, “Granito El Peñón, sierra de Umango, descripción, edad Rb/Sr e implicancias geotectónicas,” Revista de la Asociación Geológica Argentina, vol. 55, no. 4, pp. 407–413, 2000. View at Google Scholar
  33. F. G. Aceñolaza and A. J. Toselli, “Consideraciones estratigráficas y tectónicas sobre el Paleozoico Inferior del Noroeste Argentino,” in Proceedings of the 2nd Congreso Latinoamericano de Geología, vol. 2, pp. 755–783, 1976.
  34. M. R. McDonough, V. Ramos, C. E. Isachsen, S. A. Bowring, and G. I. Vujovich, “Edades Preliminares de Circones del Basamento de la Sierra de Pie de Palo, Sierras Pampeanas Occidentales de San Juan: sus implicancias para el supercontinente proterozoico de Rodinia,” in Proceedings of the 12th Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, vol. 4, pp. 16–22, 1993.
  35. L. Dalla Salda, C. Cingolani, and R. Varela, “Early Paleozoic orogenic belt of the Andes in southwestern South America: result of Laurentia-Gondwana collision?” Geology, vol. 20, no. 7, pp. 617–620, 1992. View at Google Scholar
  36. S. M. Kay, S. Orrel, and J. M. Abbruzi, “Zircon and whole rock Nd-Pb isotopic evidence for a Grenville age and a Laurentian origin for the Precordillera terrane in Argentina,” Journal of Geology, vol. 104, pp. 637–648, 1996. View at Google Scholar
  37. V. A. Ramos, M. Escayola, D. Mutti, and G. I. Vujovich, “Proterozoic-early Paleozoic ophiolites in the Andean basament of southern South America,” in Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program, Y. Dilek and E. Moores, Eds., vol. 349, pp. 331–349, Geological Society of America, 2001, special paper. View at Google Scholar
  38. R. A. Astini, J. L. Benedetto, and N. E. Vaccari, “The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: a geodynamic model,” Geological Society of America Bulletin, vol. 107, no. 3, pp. 253–273, 1995. View at Google Scholar
  39. F. G. Aceñolaza, H. Miller, and A. J. Toselli, “Proterozoic—early Paleozoic evolution in western South American—a discussion,” Tectonophysics, vol. 354, pp. 121–137, 2002. View at Google Scholar
  40. W. J. Hinze, C. Aiken, J. Brozena et al., “New standards for reducing gravity data: the North American gravity database,” Geophysics, vol. 70, no. 4, pp. 25–32, 2005. View at Publisher · View at Google Scholar
  41. W. J. Hinze, “Bouguer reduction density, why 2.67?” Geophysics, vol. 68, no. 5, pp. 1559–1560, 2003. View at Google Scholar
  42. M. F. Kane, “A comprehensive system of Terrain corrections using a digital computer,” Geophysics, vol. 27, pp. 455–462, 1962. View at Google Scholar
  43. D. Nagy, “The gravitational attraction of a right rectangular prism,” Geophysics, vol. 31, pp. 362–371, 1966. View at Google Scholar
  44. I. C. Briggs, “Machine contouring using minimum curvature,” Geophysics, vol. 39, pp. 39–48, 1974. View at Google Scholar
  45. R. L. Parker, “The rapid calculation of potential anomalies,” Geophysical Journal of the Royal Astronomical Society, vol. 31, pp. 447–455, 1972. View at Google Scholar
  46. C. Braitenberg and M. Zadro, “Iterative 3D gravity inversion with integration of seismologic data,” Bollettino di Geofisica Teorica e Applicata, vol. 40, no. 3-4, pp. 469–476, 1999. View at Google Scholar
  47. D. W. Oldenburg, “The inversion and interpretation of gravity anomalies,” Geophysics, vol. 39, no. 4, pp. 526–536, 1974. View at Google Scholar
  48. J. G. Sclater and P. A. F. Christie, “Continental stretching: an explanation of the post mid-Cretaceous subsidence of the central North Sea basin,” Journal of Geophysical Research, vol. 85, pp. 3711–3739, 1980. View at Google Scholar
  49. A. B. Watts, Isostasy and Flexure of the Lithosphere, Cambridge University Press, Cambridge, UK, 2001.
  50. C. Braitenberg, J. Ebbing, and H. J. Götze, “Inverse modeling of elastic thickness by convolution method—the Eastern Alps as a case example,” Earth and Planetary Science Letters, vol. 202, pp. 387–404, 2002. View at Google Scholar
  51. S. Wienecke, C. Braitenberg, and H. J. Götze, “A new analytical solution for the differential equation of the 4th order estimating the flexural rigidity in the Central Andes (1533S). in editorial process,” in Proceedings of the International Workshop Innovation in EM, Grav and Mag Methods: A New Perspective for Exploration, Capri, Italy, April 2007.
  52. G. P. Woollard, “Regional variations in gravity. The earth's crust and upper mantle,” in Geophysical Monograph, P. J. Hart, Ed., vol. 13, pp. 320–341, AGU, 1969. View at Google Scholar
  53. A. Introcaso and M. C. Pacino, “Modelo gravimétrico de corteza y manto superior bajo el segmento argentino chileno en la Latitud 32Sur,” in Proceedings of the 5th Congreso Geológico Chileno, vol. 2, pp. F63–F76, 1988.
  54. M. P. Martinez, M. E. Gimenez, G. Bustos, F. Lince Klinger, M. Mallea, and T. Jordan, “Detección de Saltos de Basamento de la Cuenca del Valle de la Rioja—Argentina—a partir de un Modelo Hidrostático,” GeoActa, vol. 31, pp. 1–9, 2006. View at Google Scholar
  55. G. Corona, “Estructura Litosférica del Sistema Andes-Sierras Pampeanas en la banda 30-31S a partir de datos de gravedad y sísmicos,” Trabajo Final de Licenciatura, FCEFN-UNSJ, 2006. View at Google Scholar
  56. H. Gilbert, S. Beck, and G. Zandt, “Lithospheric and upper mantle structure of central Chile and Argentina,” Geophysical Journal International, vol. 165, no. 1, pp. 383–398, 2006. View at Publisher · View at Google Scholar
  57. E. G. Triep and C. B. Cardinalli, “Mecanismos de sismos en las Sierras Pampeanas occidentales,” in Proceedings of the 9th Congreso Geológico Argentino, vol. 3, pp. 61–80, 1984.
  58. L. S. Wagner, S. Beck, G. Zandt, and M. N. Ducea, “Depleted lithosphere, cold, trapped asthenosphere, and frozen melt puddles above the flat slab in central Chile and Argentina,” Earth and Planetary Science Letters, vol. 245, no. 1-2, pp. 289–301, 2006. View at Publisher · View at Google Scholar
  59. A. Introcaso, M. P. Martinez, M. Gimenez, and F. Ruiz, “Gravi-magnetometric study of the Desaguadero Bermejo lineament separating Cuyania and Pampia terrains between 2845 and 3130 South latitude,” Gondwana Research. International Association for Gondwana Research, Japan, vol. 7, no. 4, pp. 117–1132, 2004, volumen especial “Cuyania, an exotic block to Gondwana”. View at Google Scholar