Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2011, Article ID 341935, 7 pages
http://dx.doi.org/10.1155/2011/341935
Research Article

The Planetary Wave Activity in Temperatures of the Stratosphere, Mesosphere and in Critical Frequencies of Ionospheric F2 Layer

Institute of Solar-Terrestrial Physics, SB RAS, P.O. Box 291, Irkutsk, Russia

Received 28 February 2011; Revised 29 April 2011; Accepted 19 May 2011

Academic Editor: Libo Liu

Copyright © 2011 N. M. Polekh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. S. Kazimirovsky, “Coupling from below as a source of ionospheric variability: a review,” Annals of Geophysics, vol. 45, no. 1, pp. 1–29, 2002. View at Google Scholar · View at Scopus
  2. E. Kazimirovsky, M. Herraiz, and B. A. de la Morena, “Effects on the ionosphere due to phenomena occurring below it: a review,” Surveys in Geophysics, vol. 24, no. 2, pp. 139–184, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Laštovička, “Forcing of the ionosphere by waves from below,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 68, no. 3–5, pp. 479–497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Laštovička, V. Fišer, and D. Pancheva, “Long-term trends in planetary wave activity (2–15 days) at 80–100 km inferred from radio wave absorption,” Journal of Atmospheric and Terrestrial Physics, vol. 56, no. 8, pp. 893–899, 1994. View at Google Scholar · View at Scopus
  5. H. Rishbeth, “F-region links with the lower atmosphere?” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 68, no. 3–5, pp. 469–478, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. I. Pogoreltsev, A. A. Vlasov, K. Fröhlich, and C. Jacob, “Planetary waves in coupling the lower and upper atmosphere,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 69, no. 17-18, pp. 2083–2101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. E. M. Apostolov, D. Altadill, and R. Hanbaba, “Spectral energy contributions of quasi-periodic oscillations (2–35 days) to the variability of the foF2,” Annales Geophysicae, vol. 16, no. 2, pp. 168–175, 1998. View at Google Scholar · View at Scopus
  8. J. Laštovička, P. Križan, P. Šauli, and D. Novotná, “Persistence of the planetary wave type oscillations in foF2 over Europe,” Annales Geophysicae, vol. 21, no. 7, pp. 1543–1552, 2003. View at Google Scholar · View at Scopus
  9. C. Borries and P. Hoffmann, “Characteristics of F2-layer planetary wave-type oscillations in northern middle and high latitudes during 2002 to 2008,” Journal of Geophysical Research, vol. 115, no. 11, Article ID A00G10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Abdu, T. K. Ramkumar, I. S. Batista et al., “Planetary wave signatures in the equatorial atmosphere-ionosphere system, and mesosphere- E- and F-region coupling,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 68, no. 3–5, pp. 509–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Pancheva, N. Mitchell, R. R. Clark, J. Drobjeva, and J. Lastovicka, “Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000); influence from below and above,” Annales Geophysicae, vol. 20, no. 11, pp. 1807–1819, 2002. View at Google Scholar · View at Scopus
  12. J. Xiong, W. Wan, B. Ning, L. Liu, and Y. Gao, “Planetary wave-type oscillations in the ionosphere and their relationship to mesospheric/lower thermospheric and geomagnetic disturbances at Wuhan (30.6°N, 114.5°E),” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 68, no. 3–5, pp. 498–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. V. Pancheva, P. J. Mukhtarov, M. G. Shepherd et al., “Two-day wave coupling of the low-latitude atmosphere-ionosphere system,” Journal of Geophysical Research, vol. 111, no. 7, Article ID A07313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Lawrence and M. J. Jarvis, “Initial comparisons of planetary waves in the stratosphere, mesosphere and ionosphere over Antarctica,” Geophysical Research Letters, vol. 28, no. 2, pp. 203–206, 2001. View at Google Scholar · View at Scopus
  15. P. Mukhtarov, D. Andonov, C. Borries, D. Pancheva, and N. Jakowski, “Forcing of the ionosphere from above and below during the Arctic winter of 2005/2006,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 72, no. 2-3, pp. 193–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Schwartz, A. Lambert, G. L. Manney et al., “Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements,” Journal of Geophysical Research, vol. 113, Article ID D15S11, 2008. View at Google Scholar
  17. M. A. Chernigovskaya, “Morphological features of the atmosphere temperature regime in the south region of East Siberia,” in Proceedings of the 15th International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, vol. 7296 of Proceedings of SPIE, 2008.
  18. M. Kopecky and G. V. Kuklin, “About the 11-year variations of the mean life duration of a group sun spots,” Issledovaniia Geomagnetizmu Aeronomii i Fizike Solntsa, vol. 2, pp. 167–175, 1971 (Russian). View at Google Scholar
  19. C. Haldoupis, D. Pancheva, and N. J. Mitchell, “A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers,” Journal of Geophysical Research, vol. 109, no. 2, Article ID A02302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. V. D. Kokourov, G. V. Vergasova, and E. S. Kazimirovsky, “Oscillations with planetary wave periods in variations in the ionospheric parameters over Irkutsk,” Geomagnetism and Aeronomy, vol. 49, no. 7, pp. 172–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. V. Vergasova, E. S. Kazimirovsky, and N. M. Polekh, “Relation of long-period variations in the critical frequencies of the F2 layer to geomagnetic activity,” Geomagnetism and Aeronomy, vol. 49, no. 1, pp. 63–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. Lopez-Gonzalez, E. Rogriguez, Garcia-Comas et al., “Climatology of planetary wave oscillations with periods of 2–20 days derived from O2 atmospheric and OH(6-2) airglow observations at mid-latitude with SATI,” Annales Geophysics, vol. 27, pp. 3645–3662, 2009. View at Google Scholar