Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2011, Article ID 957329, 3 pages
http://dx.doi.org/10.1155/2011/957329
Research Article

The Postglacial Rebound Signal of Fennoscandia Observed by Absolute Gravimetry, GPS, and Tide Gauges

Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway

Received 26 August 2010; Accepted 20 October 2010

Academic Editor: Petr Vaníček

Copyright © 2011 Bjørn Ragnvald Pettersen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ekman and J. Mäkinen, “Recent postglacial rebound, gravity change and mantle flow in Fennoscandia,” Geophysical Journal International, vol. 126, no. 1, pp. 229–234, 1996. View at Google Scholar · View at Scopus
  2. G. A. Milne, J. L. Davis, J. X. Mitrovica et al., “Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia,” Science, vol. 291, no. 5512, pp. 2381–2385, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H.-G. Scherneck, J. M. Johansson, H. Koivula, T. van Dam, and J. L. Davis, “Vertical crustal motion observed in the BIFROST project,” Journal of Geodynamics, vol. 35, no. 4-5, pp. 425–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Mäkinen, A. Engfeldt, B. G. Harsson et al., “The Fennoscandian land uplift gravity lines 1966–2003,” in Gravity, Geoid and Space Missions, C. Jekeli, L. Bastos, and J. Fernandes, Eds., IAG Symposium 129, pp. 328–332, Springer, Berlin, Germany, 2005. View at Google Scholar
  5. L. Cannizzo, G. Cerutti, and I. Marson, “Absolute-gravity measurements in Europe,” Il Nuovo Cimento C, vol. 1, no. 1, pp. 39–85, 1978. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Mäkinen, M. Bilker-Koivula, F. Klopping, R. Falk, L. Timmen, and O. Gitlein, “Time series of absolute gravity in Finland,” in Proceedings of the 1st International Symposium of the International Gravity Field Service, Istanbul, Turkey, August-September 2006.
  7. T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt, and F. Klopping, “A new generation of absolute gravimeters,” Metrologia, vol. 32, no. 3, pp. 159–180, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Wilmes, R. Falk, F. Klopping et al., “Long-term gravity variations in Scandinavia from repeated absolute gravity measurements in the period 1991 to 2003,” in Proceedings of the IAG International Symposium on Gravity, Geoid, and Space Missions (GGSM '04), IAG Symposium 129, 2004, CD.
  9. L. Timmen, O. Gitlein, J. Müller et al., “Observing Fennoscandian gravity change by absolute gravimetry,” in Geodetic Deformation Monitoring: From Geophysical to Engineering Roles, IAG Symposium 131, pp. 193–199, Springer, London, UK, 2006. View at Google Scholar
  10. A. Engfeldt, L. Timmen, O. Gitlein et al., “Observing absolute gravity acceleration in the Fennoscandian Land Uplift Area,” in Proceedings of the 1st International Symposium of the International Gravity Field Service, Istanbul, Turkey, August-September 2006.
  11. K. Kaniuth and S. Vetter, “Vertical velocities of European coastal sites derived from continuous GPS observations,” GPS Solutions, vol. 9, no. 1, pp. 32–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Lidberg, J. M. Johansson, H.-G. Scherneck, and J. L. Davis, “An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia,” Journal of Geodesy, vol. 81, no. 3, pp. 213–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Kristiansen, personal communication, November 2005.
  14. A. Lambert, N. Courtier, and T. S. James, “Long-term monitoring by absolute gravimetry: tides to postglacial rebound,” Journal of Geodynamics, vol. 41, no. 1–3, pp. 307–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Wahr, D. Han, and A. Trupin, “Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic earth,” Geophysical Research Letters, vol. 22, no. 8, pp. 977–980, 1995. View at Google Scholar · View at Scopus
  16. T. S. James and E. R. Ivins, “Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum,” Journal of Geophysical Research B, vol. 103, no. 3, pp. 4993–5017, 1998. View at Google Scholar · View at Scopus
  17. M. Fang and B. H. Hager, “Vertical deformation and absolute gravity,” Geophysical Journal International, vol. 146, no. 2, pp. 539–548, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. C. de Linage, J. Hinderer, and Y. Rogister, “A search for the ratio between gravity variation and vertical displacement due to a surface load,” Geophysical Journal International, vol. 171, no. 3, pp. 986–994, 2007. View at Publisher · View at Google Scholar · View at Scopus