Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2011 (2011), Article ID 958483, 16 pages
http://dx.doi.org/10.1155/2011/958483
Research Article

Advantages of Shear Wave Seismic in Morrow Sandstone Detection

Colorado School of Mines, Golden, CO 80401-1843, USA

Received 25 December 2010; Accepted 7 March 2011

Academic Editor: Yu Zhang

Copyright © 2011 Paritosh Singh and Thomas Davis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. P. Sorenson, “A dynamic model for the Permian Panhandle and Hugoton fields, western Anadarko basin,” American Association of Petroleum Geologists Bulletin, vol. 89, no. 7, pp. 921–938, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. D. Rice, C. N. Threlkeld, and A. K. Vuletich, “Character, origin and occurrence of natural gases in the Anadarko basin, southwestern Kansas, western Oklahoma and Texas Panhandle, U.S.A,” Chemical Geology, vol. 71, no. 1–3, pp. 149–157, 1988. View at Google Scholar · View at Scopus
  3. J. R. Halverson, “Seismic expression of the upper Morrow sands, Western Anadarko Basin,” Geophysics, vol. 53, no. 3, pp. 290–303, 1988. View at Google Scholar
  4. J. T. Noah, R. D. Teague, and G. Hofland, “Twin Morrow field: a case study,” The Leading Edge, vol. 13, no. 1, pp. 25–30, 1994. View at Google Scholar
  5. M. Wiley, Structural and stratigraphic controls on Morrow sandstone reservoir distribution from 3-D seismic data, Postle field, Texas county, Oklahoma, M.S. thesis, Colorado School of Mines, Golden, Colo, USA, 2009, #T-6576.
  6. J. Gibson and S. Roche, “Multicomponent technology—reducing risk and creating opportunity,” Exploration and Production: The Oil and Gas Review, pp. 1–7, 2005. View at Google Scholar
  7. J. Caldwell, P. Christie, F. Engelmark et al., “Shear waves shine brightly,” Oilfield Review, vol. 11, no. 1, pp. 2–15, 1999. View at Google Scholar
  8. F. Engelmark, “Using converted shear waves to image reservoirs with low-impedance contrast,” The Leading Edge, vol. 19, no. 6, pp. 600–603, 2000. View at Google Scholar · View at Scopus
  9. M. K. MacLeod, R. A. Hanson, C. R. Bell, and S. McHugo, “The Alba field ocean bottom cable seismic survey: impact on field development,” The Leading Edge, vol. 18, no. 11, pp. 1306–1312, 1999. View at Google Scholar · View at Scopus
  10. G. F. Margrave, D. C. Lawton, and R. R. Stewart, “Interpreting channel sands with 3C-3D seismic data,” The Leading Edge, vol. 17, no. 4, pp. 509–513, 1998. View at Google Scholar · View at Scopus
  11. S. Knapp, N. Payne, and T. Johns, “Imaging through gas clouds: a case history in the Gulf of Mexico,” in Proceedings of the 71st Annual International Meeting, pp. 776–779, SEG, 2002, Expanded Abstracts.
  12. F. Engelmark, “Using 4-C to characterize lithologies and fluids in clastic reservoirs,” The Leading Edge, vol. 20, no. 9, pp. 1053–1055, 2001. View at Google Scholar · View at Scopus
  13. S. Crampin, “Evaluation of anisotropy by shear-wave splitting,” Geophysics, vol. 50, no. 1, pp. 142–152, 1985. View at Google Scholar · View at Scopus
  14. M. A. Martin and T. L. Davis, “Shear-wave birefringence: a new tool for evaluating fractured reservoirs,” The Leading Edge, vol. 8, no. 10, pp. 22–28, 1987. View at Google Scholar
  15. S. Crampin, “Anisotropy and transverse isotropy,” Geophysical Prospecting, vol. 34, no. 1, pp. 94–99, 1986. View at Google Scholar · View at Scopus
  16. S. Crampin, “Geological and industrial implications of extensive-dilatancy anisotropy,” Nature, vol. 328, no. 6130, pp. 491–496, 1987. View at Google Scholar · View at Scopus
  17. S. Crampin, “Nonparallel S-wave polarizations in sedimentary basins,” in Proceedings of the 58th Annual International Meeting, pp. 1130–1132, SEG, 1988, Expanded Abstracts.
  18. S. Crampin, “The new geophysics: shear-wave splitting provides a window into the crack-critical rock mass,” The Leading Edge, vol. 22, no. 6, pp. 536–549, 2003. View at Google Scholar · View at Scopus
  19. H. B. Lynn and L. A. Thomsen, “Reflection shear-wave data collected near the principal axes of azimuthal anisotropy,” Geophysics, vol. 55, no. 2, pp. 147–156, 1990. View at Google Scholar · View at Scopus
  20. M. C. Mueller, “Using shear waves to predict lateral variability in vertical fracture intensity,” The Leading Edge, vol. 11, no. 2, pp. 29–35, 1992. View at Google Scholar
  21. M. Rumon, Shear wave time-lapse seismic monitoring of a tight gas sandstone reservoir, Rulison field, Colorado, M.S. thesis, Colorado School of Mines, Golden, Colo, USA, 2006, #T-6187.
  22. M. Terrel, Fracture permeability characterization at Weyburn field: from shear wave anisotropy through flow simulation, Ph.D. thesis, Colorado School of Mines, Golden, Colo, USA, 2004, #T-5486.
  23. R. R. Stewart, J. E. Gaiser, R. J. Brown, and D. C. Lawton, “Converted-wave seismic exploration: applications,” Geophysics, vol. 68, no. 1, pp. 40–57, 2003. View at Google Scholar · View at Scopus
  24. T. Wilson, Converted-Wave Morrow sandstone delineation, Eva South field, Texas County, Oklahoma, M.S. thesis, Colorado School of Mines, Golden, Colo, USA, 2002, #T-5597.
  25. J. E. Blott, Morrow valley fill sandstone reservoir characterization with 3D-3C seismology, Sorrento field, Colorado, Ph.D. thesis, Colorado School of Mines, Golden, Colo, USA, 1997, #T-5006.
  26. D. C. Rampton, The shear difference: improved characterization of a Morrow fluvial sandstone using the shear seismic response, Sorrento field, Southeast Colorado, M.S. thesis, Colorado School of Mines, Golden, Colo, USA, 1995, #T-4759.
  27. T. L. Davis, “Dynamic reservoir characterization for high resolution connectivity mapping and conformance control. Morrow sandstone reservoir, Postle field, Oklahoma,” Colorado School of Mines Proposal no. 8181, 2007.
  28. M. A. Zimmer, M. Prasad, G. Mavko, and A. Nur, “Seismic velocities of unconsolidated sands—part 1: pressure trends from 0.1 to 20 MPa,” Geophysics, vol. 72, no. 1, pp. E1–E13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. N. Toksöz, C. H. Cheng, and A. Timur, “Velocities of seismic waves in porous rocks,” Geophysics, vol. 41, no. 4, pp. 621–645, 1976. View at Google Scholar
  30. P. Singh, T. Davis, and M. O'Brien, “Understanding Morrow A sands through elastic modeling,” in Proceedings of the 79th Annual International Meeting, pp. 1252–1256, SEG, 2009, Expanded Abstracts.
  31. E. Arro, “Morrowan sandstones in the subsurface of the Hough area, Texas county, Oklahoma,” OCGS—The Shale Shaker Digest V, vol. 15–17, pp. 16–30, 1965. View at Google Scholar
  32. D. W. Bowen and P. Weimer, “Regional sequence stratigraphic setting and reservoir geology of Morrow incised-valley sandstones (lower Pennsylvanian), eastern Colorado and western Kansas,” AAPG Bulletin, vol. 87, no. 5, pp. 781–815, 2003. View at Google Scholar · View at Scopus
  33. M. E. Henry and T. C. Hester, “Anadarko Basin Province (058),” 1995, http://certmapper.cr.usgs.gov/data/noga95/prov58/text/prov58.pdf. View at Google Scholar
  34. B. Rascoe Jr. and F. J. Adler, “Permo-Carboniferous hydrocarbon accumulations, Mid-Continent, U.S.A,” American Association of Petroleum Geologists Bulletin, vol. 67, no. 6, pp. 979–1001, 1983. View at Google Scholar · View at Scopus
  35. R. Pinto, “Vp/Vs: reservoir characterization project spring 2010 meeting presentation,” Colorado School of Mines, 2010.
  36. J. M. Carcione, G. C. Herman, and A. P. E. ten Kroode, “Seismic modeling,” Geophysics, vol. 67, no. 4, pp. 1304–1325, 2002. View at Google Scholar
  37. E. S. Krebes, “Seismic forward modeling,” CSEG Recorder, pp. 28–39, 2004. View at Google Scholar
  38. G. F. Margrave and P. M. Manning, “Seismic modeling: an essential interpreter’s tool,” in Proceedings of the CSEG National Convention, 2004.
  39. I. Lecomte, H. Gjoystdal, A. Drottning, F. A. Maao, T. A. Johansen, and R. Bakke, “Efficient and flexible seismic modeling of reservoirs: a hybrid approach,” The Leading Edge, vol. 23, no. 5, pp. 432–437, 2004. View at Google Scholar
  40. J. T. Etgen, “Finite-difference elastic anisotropic wave propagation,” Stanford Exploration Project Report SEP-56, 1987. View at Google Scholar
  41. J. T. Etgen and M. J. O'Brien, “Computational methods for large-scale 3D acoustic finite-difference modeling: a tutorial,” Geophysics, vol. 72, no. 5, pp. 223–230, 2007. View at Publisher · View at Google Scholar
  42. C. E. Melvin, The influence of P-wave multiple attenuation characterization of the Morrow A sandstone reservoir at Postle field, Texas county, Oklahoma, M.S. thesis, Colorado School of Mines, Golden, Colo, USA, 2010.
  43. R. M. Alford, “Shear data in the presence of azimuthal anisotropy,” in Proceedings of the 56th Annual International Meeting, pp. 476–479, SEG, 1986, Expanded Abstracts.