Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2012, Article ID 231256, 14 pages
http://dx.doi.org/10.1155/2012/231256
Research Article

Imaging the Morrow A Sandstone Using Shear Wave VSP Data, Postle Field, Oklahoma

Reservoir Characterization Project, Department of Geophysics, Colorado School of Mines, Golden, CO 80401, USA

Received 8 June 2012; Accepted 11 September 2012

Academic Editor: Joerg Schleicher

Copyright © 2012 Naser Tamimi and Thomas L. Davis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Benton, “Subsurface stratigraphic analysis, Morrow (Pennsylvanian), North Central Texas County, Oklahoma,” The Shale Shaker Digest, vol. 21–23, pp. 21–23, 1973. View at Google Scholar
  2. D. C. Swanson, “Deltaic deposits in the Pennsylvanian upper Morrow formation of the Anadarko Basin, in Pennsylvanian sandstones of the mid-continent,” Tulsa Geological Society Special Publication, no. 1, pp. 115–168, 1979. View at Google Scholar
  3. T. D. Jobe, Optimizing geo-cellular reservoir modeling in a braided river incised valley fill: postle field, Texas County, Oklahoma [M.S. thesis], Colorado School of Mines, 2010.
  4. J. R. Halverson, “Seismic expression of the Upper Morrow Sands in the Western Anadarko basin,” Oil and Gas Journal, vol. 86, no. 44, pp. 290–303, 1988. View at Google Scholar · View at Scopus
  5. J. T. Noah, R. D. Teague, and G. Hoand, “Twin Morrow field: a case study,” The Leading Edge, vol. 13, p. 2530, 1994. View at Google Scholar
  6. M. L. Willey, Structural and stratigraphic controls on Morrow Sandstone reservoir distribution from 3-D seismic data, postle field, Texas County, Oklahoma [M.S. thesis], Colorado School of Mines, 2009.
  7. A. Robinson, Acoustic impedance inversion for static and dynamic characterization of a CO2 EOR Project, Postle Field, Oklahoma [M.S. thesis], Colorado School of Mines, 2010.
  8. M. Minaei and T. L. Davis, “Increasing seismic resolution by post-stack processing procedures in Postle Field, Oklahoma,” in Proceedings of the 81st SEG Meeting, pp. 1036–1040, San Antonio, Tex, USA, 2011.
  9. T. L. Davis, R. D. Benson, S. Wehner, M. Raines, and R. Freidline, “Seismic reservoir characterization of the Morrow A Sandstone, Postle Field, Oklahoma,” in Proceedings of the 80th SEG Meeting, pp. 2256–2260, Denver, Colo, USA, 2010.
  10. P. Singh and T. L. Davis, “Advantages of shear wave seismic in Morrow Sandstone detection,” International Journal of Geophysics, vol. 2011, Article ID 958483, 16 pages, 2011. View at Publisher · View at Google Scholar
  11. A. V. Wandler, T. L. Davis, and P. K. Singh, “An experimental and modeling study on the response to varying pore pressure and reservoir fluids in the Morrow A Sandstone,” International Journal of Geophysics, vol. 2012, Article ID 726408, 17 pages, 2012. View at Publisher · View at Google Scholar
  12. B. A. Hardage, M. DeAngelo, and P. Murray, “Defining P-wave and S-wave stratal surfaces with nine-component VSPs,” The Leading Edge, vol. 22, no. 8, pp. 720–729, 2003. View at Google Scholar · View at Scopus
  13. P. Mazumdar and T. L. Davis, “Shear-wave sourced 3-D VSP depth imaging of tight gas sandstones in rulison field, Colorado,” CSEG Recorder, pp. 20–26, 2010. View at Google Scholar
  14. H. H. Hess, “Seismic anisotropy of the uppermost mantle under oceans,” Nature, vol. 203, no. 4945, pp. 629–631, 1964. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Crampin, “Evaluation of anisotropy by shear-wave splitting,” Geophysics, vol. 50, no. 1, pp. 142–152, 1985. View at Google Scholar · View at Scopus
  16. B. K. Sinha and S. Kostek, “Stress-induced azimuthal anisotropy in borehole flexural waves,” Geophysics, vol. 61, no. 6, pp. 1899–1907, 1996. View at Google Scholar · View at Scopus
  17. N. Tamimi, A. V. Wandler, and T. Bratton, “Processing and preliminary interpretation of full sonic waveform data, HMU 24-4, postle Oilfield,” Reservoir Characterization Project Spring Meeting Report, pp. 46–53, 2009. View at Google Scholar
  18. B. S. Aadnøy and J. S. Bell, “Classification of drilling-induced fractures and their relationship to in-situ stress directions,” Log Analyst, vol. 39, no. 6, pp. 27–40, 1998. View at Google Scholar · View at Scopus
  19. M. P. Harrison, Processing of P-SV surface seismic data: anisotropy analysis, dip moveout, and migration [Ph.D. dissertation], University of Calgary, 1992.
  20. R. M. Alford, “Shear wave data in the presence of azimuthal anisotropy,” in Proceedings of the 56th SEG Meeting, pp. 476–479, Dilley, Tex, USA, 1986.
  21. Z. Sun and M. J. Jones, “VSP multi-algorithm shear-wave anisotropy study,” CREWES Research Report, vol. 5, pp. 601–622, 1993. View at Google Scholar
  22. J. H. Kommedal and B. A. Tjostheim, “A study of different methods of wavefield separation for application to VSP data,” Geophysical Prospecting, vol. 37, no. 2, pp. 117–142, 1989. View at Google Scholar · View at Scopus
  23. K. D. Wyatt and S. B. Wyatt, “Determining subsurface structure using the vertical seismic profile,” in Vertical Seismic Profiling, Part B—Advanced Concepts, N. M. Toksoz and R.R. Stewart, Eds., Geophysical Press, 1984. View at Google Scholar
  24. S. J. Gulati, R. R. Stewart, J. Peron, and J. M. Parkin, “3C-3D VSP: normal moveout correction and VSPCDP transformation,” CREWES Research Report, vol. 9, pp. 901–930, 1997. View at Google Scholar