Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2012, Article ID 954271, 12 pages
http://dx.doi.org/10.1155/2012/954271
Research Article

Superconducting Gravimeter Calibration by CoLocated Gravity Observations: Results from GWR C025

Department of Meteorology and Geophysics, University of Vienna, Althanstrasse 19, A-1090 Wien, Austria

Received 23 March 2012; Accepted 6 June 2012

Academic Editor: Jose Arnoso

Copyright © 2012 Bruno Meurers. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Van Camp and O. Francis, “Is the instrumental drift of superconducting gravimeters a linear or exponential function of time?” Journal of Geodesy, vol. 81, no. 5, pp. 337–344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Dehant, P. Defraigne, and J. M. Wahr, “Tides for a convective Earth,” Journal of Geophysical Research B, vol. 104, no. 1, pp. 1035–1058, 1999. View at Google Scholar · View at Scopus
  3. P. M. Mathews, “Love numbers and gravimetric factor for diurnal tides,” Journal of the Geodetic Society of Japan, vol. 47, no. 1, pp. 253–259, 2001, in Proceedings of the 14th International Symposium on Earth Tides. View at Google Scholar
  4. J. Hinderer, N. Florsch, J. Makinen, H. Legros, and J. E. Faller, “On the calibration of a superconducting gravimeter using absolute gravity measurements,” Geophysical Journal International, vol. 106, no. 2, pp. 491–497, 1991. View at Google Scholar · View at Scopus
  5. O. Francis, T. M. Niebauer, G. Sasagawa, F. Klopping, and J. Gschwind, “Calibration of a superconducting gravimeter by comparison with an absolute gravimeter FG5 in Boulder,” Geophysical Research Letters, vol. 25, no. 7, pp. 1075–1078, 1998. View at Google Scholar · View at Scopus
  6. J. Hinderer, M. Amalvict, O. Francis, and J. Mäkinen, “On the calibration of superconducting gravimeters with the help of absolute gravity measurements,” in Proceedings of the 13th International Symposium on Earth Tides, B. Ducarme and P. Pâquet, Eds., pp. 557–564, Brussels, Belgium, July 1997.
  7. O. Francis and T. Van Dam, “Evaluation of the precision of using absolute gravimeters to calibrate superconducting gravimeters,” Metrologia, vol. 39, no. 5, pp. 485–488, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Meurers, “Superconducting gravimetry in geophysical research today,” Journal of the Geodetic Society of Japan, vol. 47, pp. 300–307, 2001. View at Google Scholar
  9. J. Hinderer, D. Crossley, and R. J. Warburton, “Gravimetric methods—superconducting gravity meters,” in Treatise on Geophysics, G. Schubert and T. Herring, Eds., vol. 3, pp. 65–122, Geodesy, 2009. View at Google Scholar
  10. S. Rosat, J. P. Boy, G. Ferhat et al., “Analysis of a 10-year (1997–2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: new results on the calibration and comparison with GPS height changes and hydrology,” Journal of Geodynamics, vol. 48, no. 3–5, pp. 360–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Riccardi, S. Rosat, and J. Hinderer, “On the accuracy of the calibration of superconducting gravimeters using absolute and spring sensors: a critical comparison,” Pure and Applied Geophysics, vol. 169, no. 8, pp. 1343–1356, 2012. View at Publisher · View at Google Scholar
  12. O. Francis and M. Hendrickx, “Calibration of the LaCoste-Romberg 906 by comparison with the superconducting gravimeter C021 in Membach (Belgium),” Journal of the Geodetic Society of Japan, vol. 47, no. 1, pp. 16–21, 2001. View at Google Scholar
  13. M. S. Bos and G. H. Scherneck, free ocean tide loading provider, http://froste.oso.chalmers.se/loading/.
  14. B. Ducarme, “Limitations of high precision tidal prediction,” in Proceedings of the New Challenges in Earth Dynamics (ETS '08), Bulletin d'Informations Marées Terrestres, 145, pp. 11663–11677, 2009.
  15. B. Ducarme, S. Rosat, L. Vandercoilden, J. Q. Xu, and H. P. Sun, “European tidal gravity observations: comparison with earth tide models and estimation of the Free Core Nutation (FCN),” in Proceedings of the IAG General Assembly: Observing our Changing Earth, M. G. Sideris, Ed., vol. 133, pp. 523–532, International Association of Geodesy, Perugia, Italy, July 2007.
  16. B. Meurers, “Aspects of gravimeter calibration by time domain comparison of gravity records,” Bulletin D'Informations Marées Terrestres, vol. 135, pp. 10643–10650, 2002. View at Google Scholar
  17. C. Kroner, “Hydrological signalsin the SG records at Moxa—a follow-up,” Bulletin D'Informations Marées Terrestres, vol. 142, pp. 11353–11358, 2006. View at Google Scholar
  18. B. Meurers, M. Van Camp, and T. Petermans, “Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis,” Journal of Geodesy, vol. 81, no. 11, pp. 703–712, 2007. View at Google Scholar
  19. Y. Imanishi, T. Higashi, and Y. Fukuda, “Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeter FG5 #210—a Bayesian approach,” Geophysical Journal International, vol. 151, no. 3, pp. 867–878, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Tamura, T. Sato, Y. Fukuda, and T. Higashi, “Scale factor calibration of a superconducting gravimeter at Esashi Station, Japan, using absolute gravity measurements,” Journal of Geodesy, vol. 78, no. 7-8, pp. 481–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Iglewicz and D. C. Hoaglin, “How to detect and handle outliers,” in The ASQC Basic References in Quality Control: Statistical Techniques, E. F. Mykytka, Ed., vol. 16, American Society for Quality Control (ASQC), Statistics Division, ASQC Quality Press, Milwaukee, Wis, USA, 1993. View at Google Scholar
  22. B. Meurers and D. Ruess, “Errichtung einer neuen Gravimeter-Eichlinie am Hochkar,” Österreichische Zeitschrift für Vermessungswesen und Photogrammetrie und Photogrammetrie, vol. 73, no. 3, pp. 175–183, 1985. View at Google Scholar
  23. B. Meurers and D. Ruess, “Gravity measurements at the Hochkar calibration line (HCL),” Österreichische Beiträge zu Meteorologie und Geophysik, vol. 26, pp. 209–215, 2001, Proceedings of the 8th International Meeting on Alpine Gravimetry, Leoben, Austria, 2000. View at Google Scholar
  24. SCINTREX Limited, “CG5 Scintrex Autograv system operation manual,” part # 867700 Rev. 1, pp. 312, 2006.
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran, the Art of Scientific Computing, Cambridge University Press, Cambridge, Mass, USA, 2nd edition, 1992.
  26. H. G. Wenzel, “Precise instrumental phase lag determination by the step response method,” Bulletin D'Informations Marées Terrestres, vol. 111, pp. 8032–8052, 1991. View at Google Scholar
  27. H. G. Wenzel, “The nanogal software: earth tide data processing package ETERNA 3.30,” Bulletin D'Informations Marées Terrestres, vol. 124, pp. 9425–9439, 1996. View at Google Scholar
  28. M. Van Camp and P. Vauterin, “Tsoft: graphical and interactive software for the analysis of time series and Earth tides,” Computers and Geosciences, vol. 31, no. 5, pp. 631–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Tamura, “A harmonic development of the tide-generating potential,” Bulletin D'Informations Marées Terrestres, vol. 99, pp. 6813–6855, 1987. View at Google Scholar