Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2013, Article ID 825276, 12 pages
Research Article

Seismic Hazard of the Uttarakhand Himalaya, India, from Deterministic Modeling of Possible Rupture Planes in the Area

1Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247 667, India
2Institute of Economics Research, National University of Mexico, UNAM, 04510 Mexico, DF, Mexico
3Institute of Geophysics, National University of Mexico, UNAM, 04510 Mexico, DF, Mexico

Received 5 March 2012; Revised 29 November 2012; Accepted 17 December 2012

Academic Editor: Vladimir G. Kossobokov

Copyright © 2013 Anand Joshi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents use of semiempirical method for seismic hazard zonation. The seismotectonically important region of Uttarakhand Himalaya has been considered in this work. Ruptures along the lineaments in the area identified from tectonic map are modeled deterministically using semi empirical approach given by Midorikawa (1993). This approach makes use of attenuation relation of peak ground acceleration for simulating strong ground motion at any site. Strong motion data collected over a span of three years in this region have been used to develop attenuation relation of peak ground acceleration of limited magnitude and distance applicability. The developed attenuation relation is used in the semi empirical method to predict peak ground acceleration from the modeled rupture planes in the area. A set of values of peak ground acceleration from possible ruptures in the area at the point of investigation is further used to compute probability of exceedance of peak ground acceleration of values 100 and 200 gals. The prepared map shows that regions like Tehri, Chamoli, Almora, Srinagar, Devprayag, Bageshwar, and Pauri fall in a zone of 10% probability of exceedence of peak ground acceleration of value 200 gals.