Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2012, Article ID 850836, 6 pages
http://dx.doi.org/10.1155/2012/850836
Review Article

Role of NKT Cells in the Pathogenesis of NAFLD

1The Third Department of Internal Medicine, Toyama University Hospital, Toyama, Toyama 930-0194, Japan
2Gastroenterology Unit, Takaoka City Hospital, Takaoka, Toyama 933-8550, Japan

Received 9 November 2011; Revised 12 January 2012; Accepted 23 January 2012

Academic Editor: Manuela Neuman

Copyright © 2012 Kazuto Tajiri and Yukihiro Shimizu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. M. Younossi, A. M. Diehl, and J. P. Ong, “Nonalcoholic fatty liver disease: an agenda for clinical research,” Hepatology, vol. 35, no. 4, pp. 746–752, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. A. Matteoni, Z. M. Younossi, T. Gramlich, N. Boparai, Yao Chang Liu, and A. J. McCullough, “Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity,” Gastroenterology, vol. 116, no. 6, pp. 1413–1419, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. C. P. Day and O. F. W. James, “Steatohepatitis: a tale of two 'Hits'?” Gastroenterology, vol. 114, no. 4 I, pp. 842–845, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. I. N. Crispe, “Hepatic T cells and liver tolerance,” Nature Reviews Immunology, vol. 3, no. 1, pp. 51–62, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. W. Z. Mehal, F. Azzaroli, and I. N. Crispe, “Immunology of the healthy liver: old questions and new insights,” Gastroenterology, vol. 120, no. 1, pp. 250–260, 2001. View at Google Scholar · View at Scopus
  6. M. G. Swain, “Natural killer T cells within the liver: conductors of the hepatic immune orchestra,” Digestive Diseases, vol. 28, no. 1, pp. 7–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Gao, W. I. Jeong, and Z. Tian, “Liver: an organ with predominant innate immunity,” Hepatology, vol. 47, no. 2, pp. 729–736, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. A. Porcelli and R. L. Modlin, “The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids,” Annual Review of Immunology, vol. 17, pp. 297–329, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. C. A. G. Bilsland and C. Milstein, “The identification of the β2-microglobulin binding antigen encoded by the human CD1D gene,” European Journal of Immunology, vol. 21, no. 1, pp. 71–78, 1991. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Durante-Mangoni, R. Wang, A. Shaulov et al., “Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells,” Journal of Immunology, vol. 173, no. 3, pp. 2159–2166, 2004. View at Google Scholar · View at Scopus
  11. K. Tsuneyama, M. Yasoshima, K. Harada, K. Hiramatsu, M. E. Gershwin, and Y. Nakanuma, “Increased CD1d expression on small bile duct epithelium and epithelioid granuloma in livers in primary biliary cirrhosis,” Hepatology, vol. 28, no. 3, pp. 620–623, 1998. View at Google Scholar · View at Scopus
  12. D. I. Godfrey and M. Kronenberg, “Going both ways: immune regulation via CD1d-dependent NKT cells,” Journal of Clinical Investigation, vol. 114, no. 10, pp. 1379–1388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Santodomingo-Garzon and M. G. Swain, “Role of NKT cells in autoimmune liver disease,” Autoimmunity Reviews, vol. 10, no. 12, pp. 793–800, 2011. View at Publisher · View at Google Scholar
  14. T. Santodomingo-Garzon, J. Han, T. Le, Y. Yang, and M. G. Swain, “Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice,” Hepatology, vol. 49, no. 4, pp. 1267–1276, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Margalit, S. A. Ghazala, R. Alper et al., “Glucocerebroside treatment ameliorates ConA hepatitis by inhibition of NKT lymphocytes,” American Journal of Physiology, Gastrointestinal and Liver Physiology, vol. 289, no. 5, pp. G917–G925, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. N. Dey, M. Szczepanik, K. Lau, M. Majewska-Szczepanik, and P. W. Askenase, “Stimulatory lipids accumulate in the mouse liver within 30 min of contact sensitization to facilitate the activation of Naive iNKT cells in a CD1d-dependent fashion,” Scandinavian Journal of Immunology, vol. 74, pp. 52–61, 2011. View at Google Scholar
  17. M. E. Kotas, H. Y. Lee, M. P. Gillum et al., “Impact of CD1d deficiency on metabolism,” PLoS One, vol. 6, no. 9, article e25478, 2011. View at Publisher · View at Google Scholar
  18. J. Hua, X. Ma, T. Webb, J. J. Potter, M. Oelke, and Z. Li, “Dietary fatty acids modulate antigen presentation to hepatic NKT cells in nonalcoholic fatty liver disease,” Journal of Lipid Research, vol. 51, no. 7, pp. 1696–1703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Li, H. Lin, S. Yang, and A. M. Diehl, “Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the innate immune system,” Gastroenterology, vol. 123, no. 4, pp. 1304–1310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Li, J. A. Oben, S. Yang et al., “Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis,” Hepatology, vol. 40, no. 2, pp. 434–441, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Guebre-Xabier, S. Yang, H. Z. Lin, R. Schwenk, U. Krzych, and A. M. Diehl, “Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage,” Hepatology, vol. 31, no. 3, pp. 633–640, 2000. View at Google Scholar · View at Scopus
  22. L. Yang, R. Jhaveri, J. Huang, Y. Qi, and A. M. Diehl, “Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers,” Laboratory Investigation, vol. 87, no. 9, pp. 927–937, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Kremer, E. Thomas, R. J. Milton et al., “Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis,” Hepatology, vol. 51, no. 1, pp. 130–141, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. X. Ma, J. Hua, and Z. Li, “Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells,” Journal of Hepatology, vol. 49, no. 5, pp. 821–830, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. E. Elinav, O. Pappo, M. Sklair-Levy et al., “Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping,” Journal of Pathology, vol. 209, no. 1, pp. 121–128, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. M. Margalit, Z. Shalev, O. Pappo et al., “Glucocerebroside ameliorates the metabolic syndrome in OB/OB mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 1, pp. 105–110, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Kremer, I. N. Hines, R. J. Milton, and M. D. Wheeler, “Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis,” Hepatology, vol. 44, no. 1, pp. 216–227, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Z. Li, M. J. Soloski, and A. M. Diehl, “Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease,” Hepatology, vol. 42, no. 4, pp. 880–885, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. W. K. Syn, Y. H. Oo, T. A. Pereira et al., “Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease,” Hepatology, vol. 51, no. 6, pp. 1998–2007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Tajiri, Y. Shimizu, K. Tsuneyama, and T. Sugiyama, “Role of liver-infiltrating CD3+ CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 6, pp. 673–680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. F. Xu, C. H. Yu, Y. M. Li, L. Xu, J. Du, and Z. Shen, “Association of the frequency of peripheral natural killer T cells with nonalcoholic fatty liver disease,” World Journal of Gastroenterology, vol. 13, no. 33, pp. 4504–4508, 2007. View at Google Scholar · View at Scopus
  32. M. Adler, S. Taylor, K. Okebugwu et al., “Intrahepatic natural killer t cell populations are increased in human hepatic steatosis,” World Journal of Gastroenterology, vol. 17, no. 13, pp. 1725–1731, 2011. View at Publisher · View at Google Scholar
  33. A. Uygun, A. Kadayifci, Z. Yesilova et al., “Serum leptin levels in patients with nonalcoholic steatohepatitis,” American Journal of Gastroenterology, vol. 95, no. 12, pp. 3584–3589, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Hebbard and J. George, “Animal models of nonalcoholic fatty liver disease,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 1, pp. 34–44, 2011. View at Publisher · View at Google Scholar