Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2013, Article ID 484903, 13 pages
http://dx.doi.org/10.1155/2013/484903
Review Article

Hepatic Manifestations in Hematological Disorders

1The Third Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
2Gastroenterology Unit, Takaoka City Hospital, Toyama 933-8550, Japan

Received 23 October 2012; Revised 11 February 2013; Accepted 11 February 2013

Academic Editor: Stephen D. H. Malnick

Copyright © 2013 Jun Murakami and Yukihiro Shimizu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Gitlin, The Liver and Systemic Disease, Churchill Livingstone, New York, NY, USA, 1997.
  2. Y. Shimizu, “Liver in systemic disease,” World Journal of Gastroenterology, vol. 14, no. 26, pp. 4111–4119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Singh and P. J. Pockros, “Hematologic and oncologic diseases and the liver,” Clinics in Liver Disease, vol. 15, no. 1, pp. 69–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Up-to-Date, “Approach to the diagnosis of hemolytic anemia in the adult,” 2012.
  5. M. Cazzola and Y. Beguin, “New tools for clinical evaluation of erythron function in man,” British Journal of Haematology, vol. 80, no. 3, pp. 278–284, 1992. View at Google Scholar · View at Scopus
  6. D. Bossi and B. Giardina, “Red cell physiology,” Molecular Aspects of Medicine, vol. 17, no. 2, pp. 117–128, 1996. View at Google Scholar · View at Scopus
  7. “The clinical reference guides for the idiopathic hematopoietic disorders,” supported by the Ministry of Health, Labour and Welfare of Japan.
  8. Up-to-Date, “Extrinsic nonimmune hemolytic anemia due to systemic disease,” 2012.
  9. H. S. Jacob and T. Amsden, “Acute hemolytic anemia with rigid red cells in hypophosphatemia,” The New England Journal of Medicine, vol. 285, no. 26, pp. 1446–1450, 1971. View at Google Scholar · View at Scopus
  10. S. Shilo, D. Werner, and C. Hershko, “Acute hemolytic anemia caused by severe hypophosphatemia in diabetic ketoacidosis,” Acta Haematologica, vol. 73, no. 1, pp. 55–57, 1985. View at Google Scholar · View at Scopus
  11. L. Zieve, “Jaundice, hyperlipemia and hemolytic anemia: a heretofore unrecognized syndrome associated with alcoholic fatty liver and cirrhosis,” Annals of internal medicine, vol. 48, no. 3, pp. 471–496, 1958. View at Google Scholar · View at Scopus
  12. W. D. Melrose, P. A. Bell, D. M. L. Jupe, and M. J. Baikie, “Alcohol-associated haemolysis in Zieve's syndrome: a clinical and laboratory study of five cases,” Clinical and Laboratory Haematology, vol. 12, no. 2, pp. 159–167, 1990. View at Google Scholar · View at Scopus
  13. J. Piccini, S. Haldar, and B. Jefferson, “Cases from the Osler medical service at Johns Hopkins university,” American Journal of Medicine, vol. 115, no. 9, pp. 729–731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zeerleder, “Autoimmune haemolytic anaemia—a practical guide to cope with a diagnosticand therapeutic challenge,” Netherlands Journal of Medicine, vol. 69, no. 4, pp. 177–184, 2011. View at Google Scholar · View at Scopus
  15. C. P. Engelfriet, M. B. Van't Veer, N. Maas, W. H. Ouwehand, D. Beckers, and A. E. G. Von dem Borne Kr. A.E.G., “Autoimmune haemolytic anaemias,” Bailliere's Clinical Immunology and Allergy, vol. 1, no. 2, pp. 251–267, 1987. View at Google Scholar · View at Scopus
  16. R. S. Shirey, T. S. Kickler, W. Bell, B. Little, B. Smith, and P. M. Ness, “Fatal immune hemolytic anemia and hepatic failure associated with a warm-reacting IgM autoantibody,” Vox Sanguinis, vol. 52, no. 3, pp. 219–222, 1987. View at Google Scholar · View at Scopus
  17. G. Socié, J. Y. Mary, A. De Gramont et al., “Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors,” The Lancet, vol. 348, no. 9027, pp. 573–577, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. R. P. De Latour, J. Y. Mary, C. Salanoubat et al., “Paroxysmal nocturnal hemoglobinuria: natural history of disease subcategories,” Blood, vol. 112, no. 8, pp. 3099–3106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. W. F. Rosse, “Paroxysmal nocturnal hemoglobinuria as a molecular disease,” Medicine, vol. 76, no. 2, pp. 63–93, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. R. C. Hartmann and D. E. Jenkins, “The “sugar-water” test for paroxysmal nocturnal hemoglobinuria,” The New England Journal of Medicine, vol. 275, no. 3, pp. 155–157, 1966. View at Google Scholar · View at Scopus
  21. T. H. Ham and J. H. Dingle, “Studies on destruction of red blood cells. II. Chronic hemolytic anemia with paroxysmal nocturnal hemoglobinuria: certain immunological aspects of the hemolytic mechanism with special reference to serum complement,” The Journal of Clinical Investigation, vol. 18, no. 6, pp. 657–672, 1939. View at Publisher · View at Google Scholar
  22. W. F. Rosse, “Dr. Ham's test revisited,” Blood, vol. 78, no. 3, pp. 547–550, 1991. View at Google Scholar · View at Scopus
  23. Up-to-Date, “Diagnosis and treatment of paroxysmal nocturnal hemoglobinuria,” 2012.
  24. A. Shah, “Acquired hemolytic anemia,” Indian Journal of Medical Sciences, vol. 58, no. 12, pp. 533–536, 2004. View at Google Scholar · View at Scopus
  25. Up-to-Date, “Overview of the clinical manifestations of sickle cell disease,” 2012.
  26. S. Banerjee, C. Owen, and S. Chopra, “Sickle cell hepatopathy,” Hepatology, vol. 33, no. 5, pp. 1021–1028, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. P. A. Berry, T. J. S. Cross, S. L. Thein et al., “Hepatic dysfunction in sickle cell disease: a new system of classification based on global assessment,” Clinical Gastroenterology and Hepatology, vol. 5, no. 12, pp. 1469–1476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. C. Ebert, M. Nagar, and K. D. Hagspiel, “Gastrointestinal and hepatic complications of sickle cell disease,” Clinical Gastroenterology and Hepatology, vol. 8, no. 6, pp. 483–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. C. S. Johnson, M. Omata, and M. J. Tong, “Liver involvement in sickle cell disease,” Medicine, vol. 64, no. 5, pp. 349–356, 1985. View at Google Scholar · View at Scopus
  30. T. W. Sheehy, “Sickle cell hepatopathy,” Southern Medical Journal, vol. 70, no. 5, pp. 533–538, 1977. View at Google Scholar · View at Scopus
  31. J. I. Brody, W. N. Ryan, and M. A. Haidar, “Serum alkaline phosphatase isoenzymes in sickle cell anemia,” Journal of the American Medical Association, vol. 232, no. 7, pp. 738–741, 1975. View at Publisher · View at Google Scholar · View at Scopus
  32. K. R. DeVault, L. S. Friedman, S. Westerberg, P. Martin, B. Hosein, and S. K. Ballas, “Hepatitis C in sickle cell anemia,” Journal of Clinical Gastroenterology, vol. 18, no. 3, pp. 206–209, 1994. View at Google Scholar · View at Scopus
  33. M. B. Leonard, B. S. Zemel, D. A. Kawchak, K. Ohene-Frempong, and V. A. Stallings, “Plasma zinc status, growth, and maturation in children with sickle cell disease,” Journal of Pediatrics, vol. 132, no. 3, pp. 467–471, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. A. S. Prasad, P. Rabbani, and J. A. Warth, “Effect of zinc on hyperammonemia in sickle cell anemia subjects,” American Journal of Hematology, vol. 7, no. 4, pp. 323–327, 1979. View at Google Scholar · View at Scopus
  35. N. R. Ghugre and J. C. Wood, “Relaxivity-iron calibration in hepatic iron overload: probing underlying biophysical mechanisms using a Monte Carlo model,” Magnetic Resonance in Medicine, vol. 65, no. 3, pp. 837–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. S. Hankins, M. P. Smeltzer, M. B. McCarville et al., “Patterns of liver iron accumulation in patients with sickle cell disease and thalassemia with iron overload,” European Journal of Haematology, vol. 85, no. 1, pp. 51–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. S. Siegelman, E. Outwater, C. A. Hanau et al., “Abdominal iron distribution in sickle cell disease: MR findings in transfusion and nontransfusion dependent patients,” Journal of Computer Assisted Tomography, vol. 18, no. 1, pp. 63–67, 1994. View at Google Scholar · View at Scopus
  38. T. Siegal, U. Seligsohn, E. Aghai, and M. Modan, “Clinical and laboratory aspects of disseminated intravascular coagulation (DIC): a study of 118 cases,” Thrombosis and Haemostasis, vol. 39, no. 1, pp. 122–134, 1978. View at Google Scholar · View at Scopus
  39. S. F. Stein and L. A. Harker, “Kinetic and functional studies of platelets, fibrinogen, and plasminogen in patients with hepatic cirrhosis,” Journal of Laboratory and Clinical Medicine, vol. 99, no. 2, pp. 217–230, 1982. View at Google Scholar · View at Scopus
  40. R. Cervera, J. C. Piette, J. Font et al., “Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients,” Arthritis and Rheumatism, vol. 46, no. 4, pp. 1019–1027, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. R. A. Asherson, M. A. Khamashta, J. Ordi-Ros et al., “The 'primary' antiphospholipid syndrome: major clinical and serological features,” Medicine, vol. 68, no. 6, pp. 366–374, 1989. View at Google Scholar · View at Scopus
  42. E. Gromnica-Ihle and W. Schossler, “Antiphospholipid syndrome,” International Archives of Allergy and Immunology, vol. 123, p. 67, 2000. View at Publisher · View at Google Scholar
  43. I. Uthman and M. Khamashta, “The abdominal manifestations of the antiphospholipid syndrome,” Rheumatology, vol. 46, no. 11, pp. 1641–1647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Stone, “HELLP syndrome: hemolysis, elevated liver enzymes, and low platelets,” Journal of the American Medical Association, vol. 280, no. 6, pp. 559–562, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. B. M. Sibai, M. K. Ramadan, I. Usta, M. Salama, B. M. Mercer, and S. A. Friedman, “Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome),” American Journal of Obstetrics and Gynecology, vol. 169, no. 4, pp. 1000–1006, 1993. View at Google Scholar · View at Scopus
  46. V. A. Catanzarite, S. M. Steinberg, C. A. Mosley, C. F. Landers, L. M. Cousins, and J. M. Schneider, “Severe preeclampsia with fulminant and extreme elevation of aspartate aminotransferase and lactate dehydrogenase levels: high risk for maternal death,” American Journal of Perinatology, vol. 12, no. 5, pp. 310–313, 1995. View at Google Scholar · View at Scopus
  47. M. Ramos-Casals, J. H. Stone, M. C. Cid, and X. Bosch, “The cryoglobulinaemias,” The Lancet, vol. 379, no. 9813, pp. 348–360, 2012. View at Publisher · View at Google Scholar
  48. J. C. Brouet, J. P. Clauvel, and F. Danon, “Biologic and clinical significance of cryoglobulins. A report of 86 cases,” American Journal of Medicine, vol. 57, no. 5, pp. 775–788, 1974. View at Google Scholar · View at Scopus
  49. A. D. Rossa, G. Trevisani, and S. Bombardieri, “Cryoglobulins and cryoglobulinemia: diagnostic and therapeutic considerations,” Clinical Reviews in Allergy and Immunology, vol. 16, no. 3, pp. 249–264, 1998. View at Google Scholar · View at Scopus
  50. F. Invernizzi, P. Pioltelli, and R. Cattaneo, “A long-term follow-up study in essential cryoglobulinemia,” Acta Haematologica, vol. 61, no. 2, pp. 93–99, 1979. View at Google Scholar · View at Scopus
  51. L. La Civita, A. L. Zignego, M. Monti, G. Longombardo, G. Pasero, and C. Ferri, “Mixed cryoglobulinemia as a possible preneoplastic disorder,” Arthritis and Rheumatism, vol. 38, no. 12, pp. 1859–1860, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Saadoun, J. Sellam, P. Ghillani-Dalbin, R. Crecel, J. C. Piette, and P. Cacoub, “Increased risks of lymphoma and death among patients with non-hepatitis C virus-related mixed cryoglobulinemia,” Archives of Internal Medicine, vol. 166, no. 19, pp. 2101–2108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Pileri, Y. Uematsu, S. Campagnoli et al., “Binding of hepatitis C virus to CD81,” Science, vol. 282, no. 5390, pp. 938–941, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. V. Agnello, R. T. Chung, and L. M. Kaplan, “A role for hepatitis C virus infection in type II cryoglobulinemia,” The New England Journal of Medicine, vol. 327, no. 21, pp. 1490–1495, 1992. View at Google Scholar · View at Scopus
  55. V. Agnello, “The etiology and pathophysiology of mixed cryoglobulinemia secondary to hepatitis C virus infection,” Springer Seminars in Immunopathology, vol. 19, no. 1, pp. 111–129, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. E. D. Charles, R. M. Green, S. Marukian et al., “Clonal expansion of immunoglobulin M+CD27+ B cells in HCV-associated mixed cryoglobulinemia,” Blood, vol. 111, no. 3, pp. 1344–1356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. G. B. Knight, L. Gao, L. Gragnani et al., “Detection of WA B cells in hepatitis C virus infection: a potential prognostic marker for cryoglobulinemic vasculitis and B cell malignancies,” Arthritis and Rheumatism, vol. 62, no. 7, pp. 2152–2159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. E. D. Charles, C. Brunetti, S. Marukian et al., “Clonal B cells in patients with hepatitis C virus-associated mixed cryoglobulinemia contain an expanded anergic CD21low B-cell subset,” Blood, vol. 117, no. 20, pp. 5425–5437, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Schott, F. Polzien, A. Müller-Issberner, G. Ramadori, and H. Hartmann, “In vitro reactivity of cryoglobulin IgM and IgG in hepatitis C virus- associated mixed cryoglobulinemia,” Journal of Hepatology, vol. 28, no. 1, pp. 17–26, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. O. Boyer, D. Saadoun, J. Abriol et al., “CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis,” Blood, vol. 103, no. 9, pp. 3428–3430, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Montagnino, “Reappraisal of the clinical expression of mixed cryoglobulinemia,” Springer Seminars in Immunopathology, vol. 10, no. 1, pp. 1–19, 1988. View at Google Scholar · View at Scopus
  62. S. H. Swerdlow, E. Campo, N. L. Harris et al., Eds., World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, IARC Press, Lyon, France, 2008.
  63. S. Faderl, M. Talpaz, Z. Estrov, S. O'Brien, R. Kurzrock, and H. M. Kantarjian, “The biology of chronic myeloid leukemia,” The New England Journal of Medicine, vol. 341, no. 3, pp. 164–172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. D. G. Savage, R. M. Szydlo, and J. M. Goldman, “Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period,” British Journal of Haematology, vol. 96, no. 1, pp. 111–116, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Cervantes and C. Rozman, “A multivariate analysis of prognostic factors in chronic myeloid leukemia,” Blood, vol. 60, no. 6, pp. 1298–1304, 1982. View at Google Scholar · View at Scopus
  66. S. M. Ondreyco, C. R. Kjeldsberg, and R. M. Fineman, “Monoblastic transformation in chronic myelogenous leukemia: presentation with massive hepatic involvement,” Cancer, vol. 48, no. 4, pp. 957–963, 1981. View at Google Scholar · View at Scopus
  67. N. I. Berlin, “Diagnosis and classification of the polycythemias,” Seminars in Hematology, vol. 12, no. 4, pp. 339–351, 1975. View at Google Scholar · View at Scopus
  68. T. C. Pearson and M. Messinezy, “The diagnostic criteria of polycythaemia rubra vera,” Leukemia and Lymphoma, vol. 22, supplement 1, pp. 87–93, 1996. View at Google Scholar · View at Scopus
  69. J. J. Michiels and E. Juvonen, “Proposal for revised diagnostic criteria of essential thrombocythemia and polycythemia vera by the Thrombocythemia Vera Study Group,” Seminars in Thrombosis and Hemostasis, vol. 23, no. 4, pp. 339–347, 1997. View at Google Scholar · View at Scopus
  70. G. Torgano, C. Mandelli, P. Massaro et al., “Gastroduodenal lesions in polycythaemia vera: frequency and role of Helicobacter pylori,” British Journal of Haematology, vol. 117, no. 1, pp. 198–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Valla, N. Casadevall, and C. Lacombe, “Primary myeloproliferative disorder and hepatic vein thrombosis. A prospective study of erythroid colony formation in vitro in 20 patients with Budd-Chiari syndrome,” Annals of Internal Medicine, vol. 103, no. 3, pp. 329–334, 1985. View at Google Scholar · View at Scopus
  72. G. Visani, C. Finelli, U. Castelli et al., “Myelofibrosis with myeloid metaplasia: clinical and haematological parameters predicting survival in a series of 133 patients,” British Journal of Haematology, vol. 75, no. 1, pp. 4–9, 1990. View at Google Scholar · View at Scopus
  73. M. N. Silverstein, Agnogenic Myeloid Metaplasia, Publishing Sciences Group, Acton, Mass, USA, 1975.
  74. A. Varki, R. Lottenberg, R. Griffith, and E. Reinhard, “The syndrome of idiopathic myelofibrosis. A clinicopathologic review with emphasis on the prognostic variables predicting survival,” Medicine, vol. 62, no. 6, pp. 353–371, 1983. View at Google Scholar · View at Scopus
  75. F. Lioté, P. Yeni, F. Teillet-Thiebaud et al., “Ascites revealing peritoneal and hepatic extramedullary hematopoiesis with peliosis in agnogenic myeloid metaplasia: case report and review of the literature,” American Journal of Medicine, vol. 90, no. 1, pp. 111–117, 1991. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Lopéz-Guillermo, F. Cervantes, M. Bruguera, A. Pereira, E. Feliu, and C. Rozman, “Liver dysfunction following splenectomy in idiopathic myelofibrosis: a study of 10 patients,” Acta Haematologica, vol. 85, no. 4, pp. 184–188, 1991. View at Google Scholar · View at Scopus
  77. J. Thiele, H. M. Kvasnicka, C. Werden, R. Zankovich, V. Diehl, and R. Fischer, “Idiopathic primary osteo-myelofibrosis: a clinico-pathological study on 208 patients with special emphasis on evolution of disease features, differentiation from essential thrombocythemia and variables of prognostic impact,” Leukemia and Lymphoma, vol. 22, no. 3-4, pp. 303–317, 1996. View at Google Scholar · View at Scopus
  78. P. A. Beer, P. J. Campbell, and A. R. Green, “Comparison of different criteria for the diagnosis of primary myelofibrosis reveals limited clinical utility for measurement of serum lactate dehydrogenase,” Haematologica, vol. 95, no. 11, pp. 1960–1963, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Primignani, I. Martinelli, P. Bucciarelli et al., “Risk factors for thrombophilia in extrahepatic portal vein obstruction,” Hepatology, vol. 41, no. 3, pp. 603–608, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Valla, N. Casadevall, M. G. Huisse et al., “Etiology of portal vein thrombosis in adults. A prospective evaluation of primary myeloproliferative disorders,” Gastroenterology, vol. 94, no. 4, pp. 1063–1069, 1988. View at Google Scholar · View at Scopus
  81. J. Hoekstra, E. L. Bresser, J. H. Smalberg, M. C. Spaander, F. W. Leebeek, and H. L. Janssen, “Long-term follow-up of patients with portal vein thrombosis and myeloproliferative neoplasms,” Journal of Thrombosis and Haemostasis, vol. 9, no. 11, pp. 2208–2214. View at Publisher · View at Google Scholar
  82. S. P'ng, B. Carnley, R. Baker, N. Kontorinis, and W. Cheng, “Undiagnosed myeloproliferative disease in cases of intra-abdominal thrombosis: the utility of the JAK2 617F mutation,” Clinical Gastroenterology and Hepatology, vol. 6, no. 4, pp. 472–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. X. Qi, Z. Yang, M. Bai, X. Shi, G. Han, and D. Fan, “Meta-analysis: the significance of screening for JAK2V617F mutation in Budd-Chiari syndrome and portal venous system thrombosis,” Alimentary Pharmacology and Therapeutics, vol. 33, no. 10, pp. 1087–1103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. S. D. Murad, A. Plessier, M. Hernandez-Guerra et al., “Etiology, management, and outcome of the Budd-Chiari syndrome,” Annals of Internal Medicine, vol. 151, no. 3, pp. 167–175, 2009. View at Google Scholar · View at Scopus
  85. M. Primignani, G. Barosi, G. Bergamaschi et al., “Role of the JAK2 mutation in the diagnosis of chronic myeloproliferative disorders in splanchnic vein thrombosis,” Hepatology, vol. 44, no. 6, pp. 1528–1534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. R. K. Patel, N. C. Lea, M. A. Heneghan et al., “Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome,” Gastroenterology, vol. 130, no. 7, pp. 2031–2038, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. Up-to-Date, “Epidemiology, pathologic features, and diagnosis of classical Hodgkin lymphoma,” 2012.
  88. A. Ross and L. S. Friedman, “The liver in systemic disease,” in Comprehensive Clinical Hepatology, B. R. Bacon, J. G. O’Grady JG, A. M. Di Bisceglie, and J. R. Lake, Eds., p. 537, Mosby Elsevier, Philadelphia, Pa, USA, 2nd edition, 2006. View at Google Scholar
  89. S. G. Hubscher, M. A. Lumley, and E. Elias, “Vanishing bile duct syndrome: a possible mechanism for intrahepatic cholestasis in Hodgkin's lymphoma,” Hepatology, vol. 17, no. 1, pp. 70–77, 1993. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Guliter, O. Erdem, M. Isik, K. Yamac, and O. Uluoglu, “Cholestatic liver disease with ductopenia (vanishing bile duct syndrome) in Hodgkin's disease: report of a case,” Tumori, vol. 90, no. 5, pp. 517–520, 2004. View at Google Scholar · View at Scopus
  91. I. Leeuwenburgh, E. P. J. Lugtenburg, H. R. Van Buuren, P. E. Zondervan, and R. A. De Man, “Severe jaundice, due to vanishing bile duct syndrome, as presenting symptom of Hodgkin's lymphoma, fully reversible after chemotherapy,” European Journal of Gastroenterology and Hepatology, vol. 20, no. 2, pp. 145–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. D. Rowbotham, J. Wendon, and R. Williams, “Acute liver failure secondary to hepatic infiltration: a single centre experience of 18 cases,” Gut, vol. 42, no. 4, pp. 576–580, 1998. View at Google Scholar · View at Scopus
  93. T. M. Shehab, M. S. Kaminski, and A. S. F. Lok, “Acute liver failure due to hepatic involvement by hematologic malignancy,” Digestive Diseases and Sciences, vol. 42, no. 7, pp. 1400–1405, 1997. View at Publisher · View at Google Scholar · View at Scopus
  94. E. S. Jaffe, “Malignant lymphomas: pathology of hepatic involvement,” Seminars in Liver Disease, vol. 7, no. 3, pp. 257–268, 1987. View at Google Scholar · View at Scopus
  95. J. . Salo', B. Nomdedeu, M. Bruguera et al., “Acute liver failure due to non-Hodgkin’s lymphoma,” The American Journal of Gastroenterology, vol. 88, no. 5, pp. 774–776, 1993. View at Publisher · View at Google Scholar
  96. E. Vardareli, E. Dundar, V. Aslan, and Z. Gulbas, “Acute liver failure due to Hodgkin's lymphoma,” Medical Principles and Practice, vol. 13, no. 6, pp. 372–374, 2004. View at Publisher · View at Google Scholar
  97. S. P. Dourakis, E. Tzemanakis, M. Deutsch, G. Kafiri, and S. J. Hadziyannis, “Fulminant hepatic failure as a presenting paraneoplastic manifestation of Hodgkin's disease,” European Journal of Gastroenterology and Hepatology, vol. 11, no. 9, pp. 1055–1058, 1999. View at Google Scholar · View at Scopus
  98. D. Rowbotham, J. Wendon, and R. Williams, “Acute liver failure secondary to hepatic infiltration: a single centre experience of 18 cases,” Gut, vol. 42, no. 4, pp. 576–580, 1998. View at Google Scholar · View at Scopus
  99. J. F. Emile, D. Azoulay, J. M. Gornet et al., “Primary non-Hodgkin's lymphomas of the liver with nodular and diffuse infiltration patterns have different prognoses,” Annals of Oncology, vol. 12, no. 7, pp. 1005–1010, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. G. A. Morali, E. Rozenmann, J. Ashkenazi, G. Munter, and D. Z. Braverman, “Acute liver failure as the sole manifestation of relapsing non-Hodgkin's lymphoma,” European Journal of Gastroenterology and Hepatology, vol. 13, no. 10, pp. 1241–1243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Yeshurun, F. Isnard, L. Garderet et al., “Acute liver failure as initial manifestation of low-grade non-Hodgkin's lymphoma transformation into large-cell lymphoma,” Leukemia and Lymphoma, vol. 42, no. 3, pp. 555–559, 2001. View at Google Scholar · View at Scopus
  102. G. M. Woolf, L. M. Petrovic, S. E. Rojter et al., “Acute liver failure due to lymphoma. A diagnostic concern when considering liver transplantation,” Digestive Diseases and Sciences, vol. 39, no. 6, pp. 1351–1358, 1994. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Bruguera and R. Miquel, “The effect of hematological and lymphatic diseases on the liver,” in Textbook of Hepatology, J. Rodés, J. P. Benhaumou, A. T. Blei, J. Reichen, and M. Rizzetto, Eds., p. 1662, Blackwell, Oxford, UK, 3rd edition, 2007. View at Google Scholar
  104. D. R. Goffinet, R. A. Castellino, and H. Kim, “Staging laparotomies in unselected previously untreated patients with non Hodgkin's lymphomas,” Cancer, vol. 32, no. 3, pp. 672–681, 1973. View at Google Scholar · View at Scopus
  105. R. Risdall, T. Hoppe, and R. Warnke, “Non-Hodgkin's lymphoma. A study of the evolution of the disease based upon 92 autopsied cases,” Cancer, vol. 44, no. 2, pp. 529–542, 1979. View at Google Scholar · View at Scopus
  106. G. Civardi, D. Vallisa, R. Bertè, A. Lazzaro, C. F. Moroni, and L. Cavanna, “Focal liver lesions in non-Hodgkin's lymphoma: investigation of their prevalence, clinical significance and the role of Hepatitis C virus infection,” European Journal of Cancer, vol. 38, no. 18, pp. 2382–2387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Masood, S. Kairouz, K. H. Hudhud, A. Z. Hegazi, A. Banu, and N. C. Gupta, “Primary non-Hodgkin lymphoma of liver,” Current Oncology, vol. 16, no. 4, pp. 74–77, 2009. View at Google Scholar
  108. F. S. Haider, R. Smith, and S. Khan, “Primary hepatic lymphoma presenting as fulminant hepatic failure with hyperferritinemia: a case report,” Journal of Medical Case Reports, vol. 2, article no. 279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. D. Baumhoer, A. Tzankov, S. Dirnhofer, L. Tornillo, and L. M. Terracciano, “Patterns of liver infiltration in lymphoproliferative disease,” Histopathology, vol. 53, no. 1, pp. 81–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. A. M. Cameron, J. Truty, J. Truell et al., “Fulminant hepatic failure from primary hepatic lymphoma: successful treatment with orthotopic liver transplantation and chemotherapy,” Transplantation, vol. 80, no. 7, pp. 993–996, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Kikuma, J. Watanabe, Y. Oshiro et al., “Etiological factors in primary hepatic B-cell lymphoma,” Virchows Archiv, vol. 460, no. 4, pp. 379–387, 2012. View at Publisher · View at Google Scholar
  112. T. Izumi, R. Sasaki, Y. Miura, and H. Okamoto, “Primary hepatosplenic lymphoma: association with hepatitis C virus infection,” Blood, vol. 87, no. 12, pp. 5380–5381, 1996. View at Google Scholar · View at Scopus
  113. M. Yoshikawa, Y. Yamane, S. Yoneda et al., “Acute hepatic failure due to hepatosplenic B-cell non-Hodgkin's lymphoma in a patient infected with hepatitis C virus,” Journal of Gastroenterology, vol. 33, no. 6, pp. 880–885, 1998. View at Publisher · View at Google Scholar · View at Scopus
  114. A. J. M. Ferreri, E. Campo, J. F. Seymour et al., “Intravascular lymphoma: clinical presentation, natural history, management and prognostic factors in a series of 38 cases, with special emphasis on the 'cutaneous variant',” British Journal of Haematology, vol. 127, no. 2, pp. 173–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. K. Shimada, K. Matsue, K. Yamamoto et al., “Retrospective analysis of intravascular large B-cell lymphoma treated with rituximab-containing chemotherapy as reported by the IVL Study Group in Japan,” Journal of Clinical Oncology, vol. 26, no. 19, pp. 3189–3195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. J. E. Chapin, L. E. Davis, M. Kornfeld, and R. N. Mandler, “Neurologic manifestations of intravascular lymphomatosis,” Acta Neurologica Scandinavica, vol. 91, no. 6, pp. 494–499, 1995. View at Google Scholar · View at Scopus
  117. M. E. Detsky, L. Chiu, M. R. Shandling, M. E. Sproule, and M. R. Ursell, “Heading down the wrong path,” The New England Journal of Medicine, vol. 355, no. 1, pp. 67–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. T. Murase, M. Yamaguchi, R. Suzuki et al., “Intravascular large B-cell lymphoma (IVLBCL): a clinicopathologic study of 96 cases with special reference to the immunophenotypic heterogeneity of CD5,” Blood, vol. 109, no. 2, pp. 478–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Murase, S. Nakamura, K. Kawauchi et al., “An Asian variant of intravascular large B-cell lymphoma: clinical, pathological and cytogenetic approaches to diffuse large B-cell lymphoma associated with haemophagocytic syndrome,” British Journal of Haematology, vol. 111, no. 3, pp. 826–834, 2000. View at Publisher · View at Google Scholar · View at Scopus
  120. K. Kojima, K. Kaneda, M. Yasukawa et al., “Specificity of polymerase chain reaction-based clonality analysis of immunoglobulin heavy chain gene rearrangement for the detection of bone marrow infiltrate in B-cell lymphoma-associated haemophagocytic syndrome,” British Journal of Haematology, vol. 119, no. 3, pp. 616–621, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Narimatsu, Y. Morishita, S. Saito et al., “Usefulness of bone marrow aspiration for definite diagnosis of Asian variant of intravascular lymphoma: four autopsied cases,” Leukemia and Lymphoma, vol. 45, no. 8, pp. 1611–1616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Shimada, T. Murase, K. Matsue et al., “Central nervous system involvement in intravascular large B-cell lymphoma: a retrospective analysis of 109 patients,” Cancer Science, vol. 101, no. 6, pp. 1480–1486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. J. Röglin and A. Böer, “Skin manifestations of intravascular lymphoma mimic inflammatory diseases of the skin,” British Journal of Dermatology, vol. 157, no. 1, pp. 16–25, 2007. View at Publisher · View at Google Scholar
  124. M. Ponzoni, A. J. M. Ferreri, E. Campo et al., “Definition, diagnosis, and management of intravascular large B-cell lymphoma: proposals and perspectives from an international consensus meeting,” Journal of Clinical Oncology, vol. 25, no. 21, pp. 3168–3173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Ganguly, “Acute intracerebral hemorrhage in intravascular lymphoma: a serious infusion related adverse event of rituximab,” American Journal of Clinical Oncology, vol. 30, no. 2, pp. 211–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Martusewicz-Boros, E. Wiatr, E. Radzikowska, K. Roszkowski-Sliz, and R. Langfort, “Pulmonary intravascular large B-cell lymphoma as a cause of severe hypoxemia,” Journal of Clinical Oncology, vol. 25, no. 15, pp. 2137–2139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Yamada, R. Nishii, S. Oka et al., “FDG-PET a pivotal imaging modality for diagnosis of stroke-onset intravascular lymphoma,” Archives of Neurology, vol. 67, no. 3, pp. 366–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. J. R. Rosh, T. Gross, P. Mamula, A. Griffiths, and J. Hyams, “Hepatosplenic T-cell lymphoma in adolescents and young adults with Crohn's disease: a cautionary tale?” Inflammatory Bowel Diseases, vol. 13, no. 8, pp. 1024–1030, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. F. Beigel, M. Jürgens, C. Tillack et al., “Hepatosplenic T-cell lymphoma in a patient with Crohn’s disease,” Nature Reviews Gastroenterology and Hepatology, vol. 6, pp. 433–436, 2009. View at Publisher · View at Google Scholar
  130. C. Créput, L. Galicier, S. Buyse, and E. Azoulay, “Understanding organ dysfunction in hemophagocytic lymphohistiocytosis,” Intensive Care Medicine, vol. 34, no. 7, pp. 1177–1187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. G. E. Janka, “Hemophagocytic syndromes,” Blood Reviews, vol. 21, pp. 245–253, 2007. View at Google Scholar
  132. C. De Kerguenec, S. Hillaire, V. Molinié et al., “Hepatic manifestations of hemophagocytic syndrome: a study of 30 cases,” American Journal of Gastroenterology, vol. 96, no. 3, pp. 852–857, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. L. Arcaini, M. Lazzarino, N. Colombo et al., “Splenic marginal zone lymphoma: a prognostic model for clinical use,” Blood, vol. 107, no. 12, pp. 4643–4649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Bruguera and R. Miquel, “The effect of hematological and lymphatic diseases on the liver,” in Textbook of Hepatology, J. Rodés, J. P. Benhaumou, A. T. Blei, J. Reichen, and M. Rizzetto, Eds., p. 1662, Blackwell, Oxford, UK, 3rd edition, 2007. View at Google Scholar
  135. D. L. Thiele, “Hepatic manifestations of systemic disease and other disorders of the liver,” in Sleisenger & Fordtran’s Gastrointestinal and Liver Disease, M. Feldman, L. S. Friedman, and M. H. Sleisenger, Eds., p. 1603, Elsevier Science, Philadelphia, Pa, USA, 7th edition, 2002. View at Google Scholar
  136. J. B. Litten, M. M. Rodríguez, and V. Maniaci, “Acute lymphoblastic leukemia presenting in fulminant hepatic failure,” Pediatric Blood and Cancer, vol. 47, no. 6, pp. 842–845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. J. F. Margolin, C. P. Steuber, and D. G. Poplack, “Acute lymphoblastic leukemia,” in Principles and Practice of Pediatric Oncology, P. A. Pizzo and D. G. Poplack, Eds., p. 489, Lippincott-Raven, Philadelphia, Pa, USA, 4th edition, 2001. View at Google Scholar
  138. R. A. Streuli, Y. Kaneko, and D. Variakojis, “Lymphoblastic lymphoma in adults,” Cancer, vol. 47, no. 10, pp. 2510–2516, 1981. View at Google Scholar · View at Scopus
  139. E. A. Copelan and E. A. McGuire, “The biology and treatment of acute lymphoblastic leukemia in adults,” Blood, vol. 85, no. 5, pp. 1151–1168, 1995. View at Google Scholar · View at Scopus
  140. A. M. Tsimberidou, S. Wen, S. O'Brien et al., “Assessment of chronic lymphocytic leukemia and small lymphocytic lymphoma by absolute lymphocyte counts in 2,126 patients: 20 years of experience at the University of Texas M.D. Anderson Cancer Center,” Journal of Clinical Oncology, vol. 25, no. 29, pp. 4648–4656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. F. Fais, F. Ghiotto, S. Hashimoto et al., “Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors,” Journal of Clinical Investigation, vol. 102, no. 8, pp. 1515–1525, 1998. View at Google Scholar · View at Scopus
  142. R. N. Damle, F. Ghiotto, A. Valetto et al., “B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes,” Blood, vol. 99, no. 11, pp. 4087–4093, 2002. View at Publisher · View at Google Scholar · View at Scopus
  143. F. K. Stevenson and F. Caligaris-Cappio, “Chronic lymphocytic leukemia: revelations from the B-cell receptor,” Blood, vol. 103, no. 12, pp. 4389–4395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. D. Catovsky, “Hairy-cell leukaemia and prolymphocytic leukaemia,” Clinics in Haematology, vol. 6, no. 1, pp. 245–268, 1977. View at Google Scholar · View at Scopus
  145. J. L. Binet, A. Auquier, G. Dighiero et al., “A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis,” Cancer, vol. 48, no. 1, pp. 198–206, 1981. View at Google Scholar
  146. K. R. Rai, A. Sawitsky, and E. P. Cronkite, “Clinical staging of chronic lymphocytic leukemia,” Blood, vol. 46, no. 2, pp. 219–234, 1975. View at Google Scholar · View at Scopus
  147. J. B. Schwartz and A. M. Shamsuddin, “The effects of leukemic infiltrates in various organs in chronic lymphocytic leukemia,” Human Pathology, vol. 12, no. 5, pp. 432–440, 1981. View at Google Scholar · View at Scopus
  148. J. Y. Wilputte, J. P. Martinet, P. Nguyen, P. Damoiseaux, J. Rahier, and A. Geubel, “Chronic lymphocytic leukemia with portal hypertension and without liver involvement: a case report underlining the roles of increased spleno-portal blood flow and “protective” sinusoidal vasoconstriction,” Acta Gastro-Enterologica Belgica, vol. 66, no. 4, pp. 303–306, 2003. View at Google Scholar · View at Scopus
  149. H. M. Golomb, D. Catovsky, and D. W. Golde, “Hairy cell leukemia. A clinical review based on 71 cases,” Annals of Internal Medicine, vol. 89, no. 5, pp. 677–683, 1978. View at Google Scholar · View at Scopus
  150. M. R. Grever, “How I treat hairy cell leukemia,” Blood, vol. 115, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. L. T. Yam, A. J. Janckila, C. H. Chan, and C. Y. Li, “Hepatic involvement in hairy cell leukemia,” Cancer, vol. 51, no. 8, pp. 1497–1504, 1983. View at Google Scholar · View at Scopus
  152. R. A. Kyle, M. A. Gertz, T. E. Witzig et al., “Review of 1027 patients with newly diagnosed multiple myeloma,” Mayo Clinic Proceedings, vol. 78, no. 1, pp. 21–33, 2003. View at Google Scholar · View at Scopus
  153. R. Perez-Soler, R. Esteban, and E. Allende, “Liver involvement in mutliple myeloma,” American Journal of Hematology, vol. 20, no. 1, pp. 25–29, 1985. View at Google Scholar · View at Scopus
  154. H. Chang, E. S. Bartlett, B. Patterson, C. I. Chen, and Q. L. Yi, “The absence of CD56 on malignant plasma cells in the cerebrospinal fluid is the hallmark of multiple myeloma involving central nervous system,” British Journal of Haematology, vol. 129, no. 4, pp. 539–541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. Up-to-Date, “An overview of amyloidosis,” 2012.
  156. F. S. Buck and M. N. Koss, “Hepatic amyloidosis: morphologic differences between systemic AL and AA types,” Human Pathology, vol. 22, no. 9, pp. 904–907, 1991. View at Publisher · View at Google Scholar · View at Scopus
  157. T. Iwata, Y. Hoshii, H. Kawano et al., “Hepatic amyloidosis in Japan: histological and morphometric analysis based on amyloid proteins,” Human Pathology, vol. 26, no. 10, pp. 1148–1153, 1995. View at Google Scholar · View at Scopus
  158. R. A. Levine, “Amyloid disease of the liver. Correlation of clinical, functional and morphologic features in forty-seven patients,” The American Journal of Medicine, vol. 33, no. 3, pp. 349–357, 1962. View at Google Scholar · View at Scopus
  159. B. Sarsik, S. Sen, F. S. Kirdok, U. S. Akarca, H. Toz, and F. Yilmaz, “Hepatic amyloidosis: morphologic spectrum of histopathological changes in AA and nonAA amyloidosis,” Pathology—Research and Practice, vol. 208, no. 12, pp. 713–718, 2012. View at Publisher · View at Google Scholar
  160. Y. D. Wang, C. Y. Zhao, and H. Z. Yin, “Primary hepatic amyloidosis: a mini literature review and five cases report,” Annals of Hepatology, vol. 11, pp. 721–727, 2012. View at Google Scholar