Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2011, Article ID 236239, 17 pages
http://dx.doi.org/10.4061/2011/236239
Review Article

Common Secondary Causes of Resistant Hypertension and Rational for Treatment

1Veterans Affairs Medical Center, George Washington University, VAMC 50 Irving Street NW, Washington, DC 20422, USA
2Veterans Affairs Medical Center, Georgetown University, Washington, DC 20422, USA

Received 8 November 2010; Accepted 11 January 2011

Academic Editor: Konstantinos Tsioufis

Copyright © 2011 Charles Faselis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, and J. He, “Global burden of hypertension: analysis of worldwide data,” Lancet, vol. 365, no. 9455, pp. 217–223, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. A. Calhoun, D. Jones, S. Textor et al., “Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research,” Hypertension, vol. 117, no. 25, pp. e510–e526, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. P. Garg, W. J. Elliott, A. Folker, M. Izhar, and H. R. Black, “Resistant hypertension revisited: a comparison of two university-based cohorts,” American Journal of Hypertension, vol. 18, no. 5, pp. 619–626, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. P. Papadopoulos and V. Papademetriou, “Resistant hypertension: diagnosis and management,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 11, no. 2, pp. 113–118, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. P. A. Sarafidis and G. L. Bakris, “Resistant hypertension. An overview of evaluation and treatment,” Journal of the American College of Cardiology, vol. 52, no. 22, pp. 1749–1757, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. H. Alderman, “Resistant hypertension: a clinical syndrome in search of a definition,” American Journal of Hypertension, vol. 21, no. 9, pp. 965–966, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. Moser, W. Cushman, and J. Handler, “Resistant or difficult-to-treat hypertension,” Journal of Clinical Hypertension, vol. 8, no. 6, pp. 434–440, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Amar, “Patients with resistant hypertension.,” Journal of Hypertensionn, vol. 25, pp. S3–S6, 2007. View at Google Scholar · View at Scopus
  9. M. Epstein, “Resistant hypertension: prevalence and evolving concepts,” Journal of Clinical Hypertension, vol. 9, no. 1, pp. 2–6, 2007. View at Google Scholar · View at Scopus
  10. R. Pisoni, M. I. Ahmed, and D. A. Calhoun, “Characterization and treatment of resistant hypertension,” Current Cardiology Reports, vol. 11, no. 6, pp. 407–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. D. Woolf and B. Pfleger, “Burden of major musculoskeletal conditions,” Bulletin of the World Health Organization, vol. 81, no. 9, pp. 646–656, 2003. View at Google Scholar · View at Scopus
  12. L. S. Lohmander, M. G. de Verdier, J. Rollof, P. M. Nilsson, and G. Engström, “Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study,” Annals of the Rheumatic Diseases, vol. 68, no. 4, pp. 490–496, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. A. Weber, “Treatment of patients with hypertension and arthritis pain: new concepts,” American Journal of Medicine, vol. 122, no. 5, pp. S16–S22, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. G. C. Curhan, W. C. Willett, B. Rosner, and M. J. Stampfer, “Frequency of analgesic use and risk of hypertension in younger women,” Archives of Internal Medicine, vol. 162, no. 19, pp. 2204–2208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Dedier, M. J. Stampfer, S. E. Hankinson, W. C. Willett, F. E. Speizer, and G. C. Curhan, “Nonnarcotic analgesic use and the risk of hypertension in US women,” Hypertension, vol. 40, no. 5, pp. 604–608, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Zhang, R. W. Moskowitz, G. Nuki et al., “OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines,” Osteoarthritis and Cartilage, vol. 16, no. 2, pp. 137–162, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. W. Zhang, M. Doherty, B. F. Leeb et al., “EULAR evidence based recommendations for the management of hand osteoarthritis: report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT),” Annals of the Rheumatic Diseases, vol. 66, no. 3, pp. 377–388, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. P. Forman, E. B. Rimm, and G. C. Curhan, “Frequency of analgesic use and risk of hypertension among men,” Archives of Internal Medicine, vol. 167, no. 4, pp. 394–399, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. P. Forman, M. J. Stampfer, and G. C. Curhan, “Non-narcotic analgesic dose and risk of incident hypertension in US women,” Hypertension, vol. 46, no. 3, pp. 500–507, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. H. Gurwitz, J. Avorn, R. L. Bohn, R. J. Glynn, M. Monane, and H. Mogun, “Initiation of antihypertensive treatment during nonsteroidal anti-inflammatory drug therapy,” Journal of the American Medical Association, vol. 272, no. 10, pp. 781–786, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. J. E. Pope, J. J. Anderson, and D. T. Felson, “A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure,” Archives of Internal Medicine, vol. 153, no. 4, pp. 477–484, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. A. G. Johnson, T. V. Nguyen, and R. O. Day, “Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis,” Annals of Internal Medicine, vol. 121, no. 4, pp. 289–300, 1994. View at Google Scholar · View at Scopus
  23. E. A. Chrischilles and R. B. Wallace, “Nonsteroidal anti-inflammatory drugs and blood pressure in an elderly population,” Journals of Gerontology, vol. 48, no. 3, pp. M91–M96, 1993. View at Google Scholar · View at Scopus
  24. A. G. Johnson, L. A. Simons, J. Simons, Y. Friedlander, and J. McCallum, “Non-steroidal anti-inflammatory drugs and hypertension in the elderly: a community-based cross-sectional study,” British Journal of Clinical Pharmacology, vol. 35, no. 5, pp. 455–459, 1993. View at Google Scholar · View at Scopus
  25. K. L. Radack, C. C. Deck, and S. S. Bloomfield, “Ibuprofen interferes with the efficacy of antihypertensive drugs. A randomized, double-blind, placebo-controlled trial of ibuprofen compared with acetaminophen,” Annals of Internal Medicine, vol. 107, no. 5, pp. 628–635, 1987. View at Google Scholar · View at Scopus
  26. J. P. Chalmers, M. J. West, L. M. H. Wing, A. J. Bune, and J. R. Graham, “Effects of indomethacin, sulindac, naproxen, aspirin and paracetamol in treated hypertensive patients,” Clinical and Experimental Hypertension A, vol. 6, no. 6, pp. 1077–1093, 1984. View at Google Scholar · View at Scopus
  27. J. J. Nawarskas, R. R. Townsend, M. D. Cirigliano, and S. A. Spinler, “Effect of aspirin on blood pressure in hypertensive patients taking enalapril or losartan,” American Journal of Hypertension, vol. 12, no. 8, pp. 784–789, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Avanzini, G. Palumbo, C. Alli et al., “Effects of low-dose aspirin on clinic and ambulatory blood pressure in treated hypertensive patients,” American Journal of Hypertension, vol. 13, no. 6, supplement, pp. 611–616, 2000. View at Google Scholar
  29. T. Kurth, C. H. Hennekens, T. Sturmer et al., “Analgesic use and risk of subsequent hypertension in apparently healthy men,” Archives of Internal Medicine, vol. 165, no. 16, pp. 1903–1909, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. T. J. Aw, S. J. Haas, D. Liew, and H. Krum, “Meta-analysis of cyclooxygenase-2 inhibitors and their effects on blood pressure,” Archives of Internal Medicine, vol. 165, no. 5, pp. 490–496, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. F. Wolfe, S. Zhao, M. Reynolds, and D. Pettitt, “Blood pressure destabilization and edema among 8538 users of celecoxib, rofecoxib, and nonselective nonsteroidal antiinflammatory drugs (NSAID) and nonusers of NSAID receiving ordinary clinical care,” Journal of Rheumatology, vol. 31, no. 6, pp. 1143–1151, 2004. View at Google Scholar · View at Scopus
  32. T. M. MacDonald, J. Y. Reginster, T. W. Littlejohn et al., “Effect on blood pressure of lumiracoxib versus ibuprofen in patients with osteoarthritis and controlled hypertension: a randomized trial,” Journal of Hypertension, vol. 26, no. 8, pp. 1695–1702, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. C. P. Cannon, S. P. Curtis, G. A. FitzGerald et al., “Cardiovascular outcomes with etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomised comparison,” Lancet, vol. 368, no. 9549, pp. 1771–1781, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. O. Morgan, A. Anderson, and D. Bertram, “Effect of indomethacin on blood pressure in elderly people with essential hypertension well controlled on amlodipine or enalapril,” American Journal of Hypertension, vol. 13, no. 11, pp. 1161–1167, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. W. B. White, J. Kent, A. Taylor, K. M. Verburg, J. B. Lefkowith, and A. Whelton, “Effects of celecoxib on ambulatory blood pressure in hypertensive patients on ACE inhibitors,” Hypertension, vol. 39, no. 4, pp. 929–934, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Whelton, W. B. White, A. E. Bello, J. A. Puma, and J. G. Fort, “Effects of celecoxib and rofecoxib on blood pressure and edema in patients > or = 65 years of age with systemic hypertension and osteoarthritis,” American Journal of Cardiology, vol. 90, no. 9, pp. 959–963, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. G. A. Cinotti and F. Pugliese, “Prostaglandins in blood pressure regulation,” Kidney International, vol. 34, no. 25, pp. S57–S60, 1988. View at Google Scholar · View at Scopus
  38. G. A. FitzGerald, “COX-2 and beyond: approaches to prostaglandin inhibition in human disease,” Nature Reviews Drug Discovery, vol. 2, no. 11, pp. 879–890, 2003. View at Google Scholar · View at Scopus
  39. A. Whelton, G. Schulman, C. Wallemark et al., “Effects of celecoxib and naproxen on renal function in the elderly,” Archives of Internal Medicine, vol. 160, no. 10, pp. 1465–1470, 2000. View at Google Scholar · View at Scopus
  40. F. Catella-Lawson, B. Mcadam, B. W. Morrison et al., “Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids,” Journal of Pharmacology and Experimental Therapeutics, vol. 289, no. 2, pp. 735–741, 1999. View at Google Scholar · View at Scopus
  41. C. Patrono and M. J. Dunn, “The clinical significance of inhibition of renal prostaglandin synthesis,” Kidney International, vol. 32, no. 1, pp. 1–12, 1987. View at Google Scholar · View at Scopus
  42. J. Rossat, M. Maillard, J. Nussberger, H. R. Brunner, and M. Burnier, “Renal effects of selective cyclooxygenase-2 inhibition in normotensive salt-depleted subjects,” Clinical Pharmacology and Therapeutics, vol. 66, no. 1, pp. 76–84, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. A. G. Johnson, T. V. Nguyen, R. Owe-Young, D. J. Williamson, and R. O. Day, “Potential mechanisms by which nonsteroidal anti-inflammatory drugs elevate blood pressure: the role of endothelin-1,” Journal of Human Hypertension, vol. 10, no. 4, pp. 257–261, 1996. View at Google Scholar · View at Scopus
  44. L. S. Lohmander, D. McKeith, O. Svensson et al., “A randomised, placebo controlled, comparative trial of the gastrointestinal safety and efficacy of AZD3582 versus naproxen in osteoarthritis,” Annals of the Rheumatic Diseases, vol. 64, no. 3, pp. 449–456, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. T. J. Schnitzer, A. J. Kivitz, R. S. Lipetz, N. Sanders, and A. Hee, “Comparison of the COX-inhibiting nitric oxide donator AZD3582 and rofecoxib in treating the signs and symptoms of osteoarthritis of the knee,” Arthritis & Rheumatism, vol. 53, no. 6, pp. 827–837, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. C. Naproxcinod Baerwald, P. Verdecchia, B. Duquesroix, H. Frayssinet, and T. Ferreira, “Efficacy, safety and effects on BP of Naproxcinod 750 Mg bid compared with Placebo and Naproxen 500 Mg bid in patients with osteoarthritis of the hip,” Arthritis & Rheumatism, vol. 62, no. 12, pp. 3635–3644, 2010. View at Google Scholar
  47. T. J. Schnitzer, M. C. Hochberg, C. E. Marrero, B. Duquesroix, H. Frayssinet, and M. Beekman, “Efficacy and safety of naproxcinod in patients with osteoarthritis of the knee: a 53-week prospective randomized multicenter study,” Seminars in Arthritis and Rheumatism, vol. 40, no. 4, pp. 285–297, 2011. View at Google Scholar
  48. R. L. Prentice, “On the ability of blood pressure effects to explain the relation between oral contraceptives and cardiovascular disease,” American Journal of Epidemiology, vol. 127, no. 2, pp. 213–219, 1988. View at Google Scholar · View at Scopus
  49. T. Rosenthal and S. Oparil, “Oral contraceptives, hormones replacement therapy, and hypertension,” in Comprehensive Hypertension, G. Lip and J. Hall, Eds., Elsevier/Mosby, New York, NY, USA, 2007. View at Google Scholar
  50. L. Chasan-Taber, W. C. Willett, J. E. Manson et al., “Prospective study of oral contraceptives and hypertension among women in the United States,” Circulation, vol. 94, no. 3, pp. 483–489, 1996. View at Google Scholar · View at Scopus
  51. J. N. Lubianca, C. S. Faccin, and F. D. Fuchs, “Oral contraceptives: a risk factor for uncontrolled blood pressure among hypertensive women,” Contraception, vol. 67, no. 1, pp. 19–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. W. B. White, V. Hanes, V. Chauhan, and B. Pitt, “Effects of a new hormone therapy, drospirenone and 17-β-estradiol, in postmenopausal women with hypertension,” Hypertension, vol. 48, no. 2, pp. 246–253, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. World Health Organization, “Low dose combined oral contraceptives,” in Improving Access to Quality Care in Family Planning: Medical Eligibility Criteria for Contraceptive Use, WHO, Geneva, Switzerland, 3rd edition, 2004. View at Google Scholar
  54. American College of Obstetricians and Gynecologists Practice Bulletin, “Use of hormonal contraception in women with coexisting medical conditions: clinical management guidelines for obstetrician-gynecologists,” Obstetrics & Gynecology, vol. 107, pp. 1453–1472, 2006. View at Google Scholar
  55. N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nature Reviews Drug Discovery, vol. 3, no. 5, pp. 391–400, 2004. View at Google Scholar · View at Scopus
  56. H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. Shinkaruk, M. Bayle, G. Lain, and G. Deleris, “Vascular Endothelial Cell Growth Factor (VEGF), an emerging target for cancer chemotherapy,” Current Medicinal Chemistry—Anti-Cancer Agents, vol. 3, no. 2, pp. 95–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. D. A. Sica, “Angiogenesis inhibitors and hypertension: an emerging issue,” Journal of Clinical Oncology, vol. 24, no. 9, pp. 1329–1331, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. H. M. W. Verheul and H. M. Pinedo, “Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition,” Nature Reviews Cancer, vol. 7, no. 6, pp. 475–485, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. X. Zhu, S. Wu, W. L. Dahut, and C. R. Parikh, “Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis,” American Journal of Kidney Diseases, vol. 49, no. 2, pp. 186–193, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. Wu, J. J. Chen, A. Kudelka, J. Lu, and X. Zhu, “Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis,” Lancet Oncology, vol. 9, no. 2, pp. 117–123, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. X. Zhu, K. Stergiopoulos, and S. Wu, “Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis,” Acta Oncologica, vol. 48, no. 1, pp. 9–17, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. J. P. Spano, C. Chodkiewicz, J. Maurel et al., “Efficacy of gemcitabine plus axitinib compared with gemcitabine alone in patients with advanced pancreatic cancer: an open-label randomised phase II study,” Lancet, vol. 371, no. 9630, pp. 2101–2108, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. G. Friberg, K. Kasza, E. E. Vokes, and H. L. Kindler, “Early hypertension as a potential pharmacodynamic marker for survival in pancreatic cancer patients treated with bevacizumab and gemcitabine,” Journal of Clinical Oncology, vol. 23, no. 16S, part I, article 3020, 2005. View at Google Scholar
  65. B. P. Schneider, M. Wang, M. Radovich et al., “Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100,” Journal of Clinical Oncology, vol. 26, no. 28, pp. 4672–4678, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. J. D. Hood, C. J. Meininger, M. Ziche, and H. J. Granger, “VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 274, no. 3, pp. H1054–H1058, 1998. View at Google Scholar · View at Scopus
  67. D. S. Gelinas, P. N. Bernatchez, S. Rollin, N. G. Bazan, and M. G. Sirois, “Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: role of PI3K, PKC and PLC pathways,” British Journal of Pharmacology, vol. 137, no. 7, pp. 1021–1030, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. J. R. Horowitz, A. Rivard, R. van der Zee et al., “Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension: evidence for a maintenance role in quiescent adult endothelium,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 11, pp. 2793–2800, 1997. View at Google Scholar · View at Scopus
  69. D. D. Ku, J. K. Zaleski, S. Liu, and T. A. Brock, “Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 265, no. 2, pp. H586–H592, 1993. View at Google Scholar · View at Scopus
  70. H. He, V. J. Venema, X. Gu, R. C. Venema, M. B. Marrero, and R. B. Caldwell, “Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through Flk-1/KDR activation of c-Src,” Journal of Biological Chemistry, vol. 274, no. 35, pp. 25130–25135, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Wheeler-Jones, R. Abu-Ghazaleh, R. Cospedal, R. A. Houliston, J. Martin, and I. Zachary, “Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A in endothelial cells via p42/p44 mitogen-activated protein kinase,” FEBS Letters, vol. 420, no. 1, pp. 28–32, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. I. I. H. Chen, R. L. Prewitt, and R. F. Dowell, “Microvascular rarefaction in spontaneously hypertensive rat cremaster muscle,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 10, no. 3, pp. H306–H310, 1981. View at Google Scholar · View at Scopus
  73. F. M. Hansen-Smith, L. W. Morris, A. S. Greene, and J. H. Lombard, “Rapid microvessel rarefaction with elevated salt intake and reduced renal mass hypertension in rats,” Circulation Research, vol. 79, no. 2, pp. 324–330, 1996. View at Google Scholar · View at Scopus
  74. P. M. Hutchins, C. D. Lynch, P. T. Cooney, and K. A. Curseen, “The microcirculation in experimental hypertension and aging,” Cardiovascular Research, vol. 32, no. 4, pp. 772–780, 1996. View at Publisher · View at Google Scholar · View at Scopus
  75. J. J. Mourad, G. des Guetz, H. Debbabi, and B. I. Levy, “Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation,” Annals of Oncology, vol. 19, no. 5, pp. 927–934, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. N. Steeghs, H. Gelderblom, J. O. Roodt et al., “Hypertension and rarefaction during treatment with telatinib, a Small molecule angiogenesis inhibitor,” Clinical Cancer Research, vol. 14, no. 11, pp. 3470–3476, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. M. L. Veronese, A. Mosenkis, K. T. Flaherty et al., “Mechanisms of hypertension associated with BAY 43-9006,” Journal of Clinical Oncology, vol. 24, no. 9, pp. 1363–1369, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. S. Bottiglieri, B. Muluneh, S. Sutphin et al., “Blood pressure control in patients receiving bevacizumab in an outpatient cancer center,” Journal of Oncology Pharmacy Practice. In press. View at Publisher · View at Google Scholar · View at PubMed
  79. O. Mir, R. Coriat, S. Ropert et al., “Treatment of bevacizumab-induced hypertension by amlodipine,” Investigational New Drugs. In press. View at Publisher · View at Google Scholar · View at PubMed
  80. K. M. Hita, T. B. Young, T. Bidwell, M. Palta, J. B. Skatrud, and J. Dempsey, “Sleep apnea and hypertension: a population-based study,” Annals of Internal Medicine, vol. 120, no. 5, pp. 382–388, 1994. View at Google Scholar · View at Scopus
  81. H. Kraiczi, Y. Peker, K. Caidahl, A. Samuelsson, and J. Hedner, “Blood pressure, cardiac structure and severity of obstructive sleep apnea in a sleep clinic population,” Journal of Hypertension, vol. 19, no. 11, pp. 2071–2078, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. P. E. Peppard, T. Young, M. Palta, and J. Skatrud, “Prospective study of the association between sleep-disordered breathing and hypertension,” New England Journal of Medicine, vol. 342, no. 19, pp. 1378–1384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Javier Nieto, T. B. Young, B. K. Lind et al., “Association of sleep-disordered breathing sleep apnea, and hypertension in a large community-based study,” Journal of the American Medical Association, vol. 283, no. 14, pp. 1829–1836, 2000. View at Google Scholar
  84. H. Isaksson and E. Svanborg, “Obstructive sleep apnea syndrome in male hypertensives, refractory to drug therapy. Nocturnal automatic blood pressure measurements—an aid to diagnosis?” Clinical and Experimental Hypertension A, vol. 13, no. 6-7, pp. 1195–1212, 1991. View at Google Scholar · View at Scopus
  85. A. G. Logan, S. M. Perlikowski, A. Mente et al., “High prevalence of unrecognized sleep apnoea in drug-resistant hypertension,” Journal of Hypertension, vol. 19, no. 12, pp. 2271–2277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. M. N. Pratt-Ubunama, M. K. Nishizaka, R. L. Boedefeld, S. S. Cofield, S. M. Harding, and D. A. Calhoun, “Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension,” Chest, vol. 131, no. 2, pp. 453–459, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. P. Lloberes, L. Lozano, G. Sampol et al., “Obstructive sleep apnoea and 24-h blood pressure in patients with resistant hypertension,” Journal of Sleep Research, vol. 19, no. 4, pp. 597–602, 2010. View at Publisher · View at Google Scholar · View at PubMed
  88. S. C. Goncalves, D. Martinez, M. Gus et al., “Obstructive sleep apnea and resistant hypertension: a case-control study,” Chest, vol. 132, no. 6, pp. 1858–1862, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. L. S. Doherty, J. L. Kiely, V. Swan, and W. T. McNicholas, “Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome,” Chest, vol. 127, no. 6, pp. 2076–2084, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. J. M. Marin, S. J. Carrizo, E. Vicente, and A. G. N. Agusti, “Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study,” Lancet, vol. 365, no. 9464, pp. 1046–1053, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. N. J. Ali, R. J. O. Davies, J. A. Fleetham, and J. R. Stradling, “The acute effects of continuous positive airway pressure and oxygen administration on blood pressure during obstructive sleep apnea,” Chest, vol. 101, no. 6, pp. 1526–1532, 1992. View at Google Scholar · View at Scopus
  92. J. E. Dimsdale, J. S. Loredo, and J. Profant, “Effect of continuous positive airway pressure on blood pressure: a placebo trial,” Hypertension, vol. 35, no. 1, pp. 144–147, 2000. View at Google Scholar · View at Scopus
  93. J. F. Faccenda, T. W. Mackay, N. A. Boon, and N. J. Douglas, “Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 2, pp. 344–348, 2001. View at Google Scholar · View at Scopus
  94. F. Barbé, L. R. Mayoralas, J. Duran et al., “Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness: a randomized, controlled trial,” Annals of Internal Medicine, vol. 134, no. 11, pp. 1015–1023, 2001. View at Google Scholar · View at Scopus
  95. J. C. T. Pepperell, S. Ramdassingh-Dow, N. Crosthwaite et al., “Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial,” Lancet, vol. 359, no. 9302, pp. 204–210, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. M. Barnes, D. Houston, C. J. Worsnop et al., “A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 6, pp. 773–780, 2002. View at Google Scholar · View at Scopus
  97. H. F. Becker, A. Jerrentrup, T. Ploch et al., “Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea,” Circulation, vol. 107, no. 1, pp. 68–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. D. Norman, J. S. Loredo, R. A. Nelesen et al., “Effects of continuous positive airway pressure versus supplemental oxygen on 24-hour ambulatory blood pressure,” Hypertension, vol. 47, no. 5, pp. 840–845, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. G. V. Robinson, D. M. Smith, B. A. Langford, R. J. O. Davies, and J. R. Stradling, “Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients,” European Respiratory Journal, vol. 27, no. 6, pp. 1229–1235, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. F. Campos-Rodriguez, A. Grilo-Reina, J. Perez-Ronchel et al., “Effect of continuous positive airway pressure on ambulatory BP in patients with sleep apnea and hypertension: a placebo-controlled trial,” Chest, vol. 129, no. 6, pp. 1459–1467, 2006. View at Publisher · View at Google Scholar · View at PubMed
  101. D. S. Hui, K. W. To, F. W. Ko et al., “Nasal CPAP reduces systemic blood pressure in patients with obstructive sleep apnoea and mild sleepiness,” Thorax, vol. 61, no. 12, pp. 1083–1090, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. S. R. Coughlin, L. Mawdsley, J. A. Mugarza, J. P. H. Wilding, and P. M. A. Calverley, “Cardiovascular and metabolic effects of CPAP in obese males with OSA,” European Respiratory Journal, vol. 29, no. 4, pp. 720–727, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. M. Kohler, J. C. T. Pepperell, B. Casadei et al., “CPAP and measures of cardiovascular risk in males with OSAS,” European Respiratory Journal, vol. 32, no. 6, pp. 1488–1496, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. F. Campos-Rodriguez, J. Perez-Ronchel, A. Grilo-Reina, J. Lima-Alvarez, M. A. Benitez, and C. Almeida-Gonzalez, “Long-term effect of continuous positive airway pressure on BP in patients with hypertension and sleep apnea,” Chest, vol. 132, no. 6, pp. 1847–1852, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. F. Barbe, J. Duran-Cantolla, F. Capote et al., “Long-term effect of continuous positive airway pressure in hypertensive patients with sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 7, pp. 718–726, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. N. Jaimchariyatam, C. L. Rodriguez, and K. Budur, “Does CPAP treatment in mild obstructive sleep apnea affect blood pressure?” Sleep Medicine, vol. 11, no. 9, pp. 837–842, 2010. View at Publisher · View at Google Scholar · View at PubMed
  107. L. A. Bazzano, Z. Khan, K. Reynolds, and J. He, “Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea,” Hypertension, vol. 50, no. 2, pp. 417–423, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. P. Haentjens, A. van Meerhaeghe, A. Moscariello et al., “The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials,” Archives of Internal Medicine, vol. 167, no. 8, pp. 757–765, 2007. View at Publisher · View at Google Scholar · View at PubMed
  109. M. Alajmi, A. T. Mulgrew, J. Fox et al., “Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea: a meta-analysis of randomized controlled trials,” Lung, vol. 185, no. 2, pp. 67–72, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. J.-L. Pépin, R. Tamisier, G. Barone-Rochette, S. H. Launois, P. Lévy, and J.-P. Baguet, “Comparison of continuous positive airway pressure and valsartan in hypertensive patients with sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 7, pp. 954–960, 2010. View at Publisher · View at Google Scholar · View at PubMed
  111. G. V. Robinson, J. R. Stradling, R. J. O. Davies et al., “Sleep · 6: obstructive sleep apnoea/hypopnoea syndrome and hypertension,” Thorax, vol. 59, no. 12, pp. 1089–1094, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. A. G. Logan, R. Tkacova, S. M. Perlikowski et al., “Refractory hypertension and sleep apnoea: effect of CPAP on blood pressure and baroreflex,” European Respiratory Journal, vol. 21, no. 2, pp. 241–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. M. A. Martínez-García, R. Gómez-Aldaraví, J. J. Soler-Cataluña, T. G. Martínez, B. Bernácer-Alpera, and P. Román-Sánchez, “Positive effect of CPAP treatment on the control of difficult-to-treat hypertension,” European Respiratory Journal, vol. 29, no. 5, pp. 951–957, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. T. A. Dernaika, G. T. Kinasewitz, and M. M. Tawk, “Effects of nocturnal continuous positive airway pressure therapy in patients with resistant hypertension and obstructive sleep apnea,” Journal of Clinical Sleep Medicine, vol. 5, no. 2, pp. 103–107, 2009. View at Google Scholar · View at Scopus
  115. L. Lozano, J. L. Tovar, G. Sampol et al., “Continuous positive airway pressure treatment in sleep apnea patients with resistant hypertension: a randomized, controlled trial,” Journal of Hypertension, vol. 28, pp. 2161–2168, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. C. J. Stepnowsky Jr. and P. J. Moore, “Nasal CPAP treatment for obstructive sleep apnea: developing a new perspective on dosing strategies and compliance,” Journal of Psychosomatic Research, vol. 54, no. 6, pp. 599–605, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. H. M. Engleman and M. R. Wild, “Improving CPAP use by patients with the sleep apnoea/hypopnoea syndrome (SAHS),” Sleep Medicine Reviews, vol. 7, no. 1, pp. 81–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. T. E. Weaver and R. R. Grunstein, “Adherence to continuous positive airway pressure therapy: the challenge to effective treatment,” Proceedings of the American Thoracic Society, vol. 5, no. 2, pp. 173–178, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. H. Kraiczi, J. Hedner, Y. Peker, and L. Grote, “Comparison of atenolol, amlodipine, enalapril, hydrochlorothiazide, and losartan for antihypertensive treatment in patients with obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 5, pp. 1423–1428, 2000. View at Google Scholar · View at Scopus
  120. K. Gaddam, E. Pimenta, S. J. Thomas et al., “Spironolactone reduces severity of obstructive sleep apnoea in patients with resistant hypertension: a preliminary report,” Journal of Human Hypertension, vol. 24, no. 8, pp. 532–537, 2010. View at Publisher · View at Google Scholar · View at PubMed
  121. J. W. Conn, “Presidential address. Part I. Painting background. Part II. Primary aldosteronism, a new clinical syndrome,” Journal of Laboratory and Clinical Medicine, vol. 45, no. 1, pp. 3–17, 1955. View at Google Scholar · View at Scopus
  122. N. M. Kaplan, “Is there an unrecognized epidemic of primary aldosteronism? Con.,” Hypertension, vol. 50, no. 3, pp. 454–458, 2007. View at Google Scholar · View at Scopus
  123. D. A. Calhoun and N. M. Kaplan, “Is there an unrecognized epidemic of primary aldosteronism? (Pro),” Hypertension, vol. 50, no. 3, pp. 447–458, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. N. M. Kaplan, “Hypokalemia in the hypertensive patient, with observations on the incidence of primary aldosteronism,” Annals of Internal Medicine, vol. 66, no. 6, pp. 1079–1090, 1967. View at Google Scholar · View at Scopus
  125. A. M. Sinclair, C. G. Isles, I. Brown, H. Cameron, G. D. Murray, and J. W. Robertson, “Seconary hypertension in a blood pressure clinic,” Archives of Internal Medicine, vol. 147, no. 7, pp. 1289–1296, 1987. View at Google Scholar
  126. R. W. Gifford Jr., “Evaluation of the hypertensive patient with emphasis on detecting curable causes,” Milbank Memorial Fund Quarterly, vol. 47, pp. 170–186, 1969. View at Google Scholar
  127. G. S. Andersen, D. B. Toftdahl, J. O. Lund, S. Strandgaard, and P. E. Nielsen, “The incidence rate of phaeochromocytoma and Conn's syndrome in Denmark, 1977–1981,” Journal of Human Hypertension, vol. 2, no. 3, pp. 187–189, 1988. View at Google Scholar · View at Scopus
  128. P. O. Lim, P. Rodgers, K. Cardale, A. D. Watson, and T. M. MacDonald, “Potentially high prevalence of primary aldosteronism in a primary-care population,” Lancet, vol. 353, no. 9146, article 40, 1999. View at Google Scholar · View at Scopus
  129. P. Mulatero, M. Stowasser, K. C. Loh et al., “Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1045–1050, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. C. E. Fardella, L. Mosso, C. Gomez-Sanchez et al., “Primary hyperaldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 5, pp. 1863–1867, 2000. View at Publisher · View at Google Scholar · View at Scopus
  131. M. Stowasser, R. D. Gordon, T. G. Gunasekera et al., “High rate of detection of primary aldosteronism, including surgically treatable forms, after 'non-selective' screening of hypertensive patients,” Journal of Hypertension, vol. 21, no. 11, pp. 2149–2157, 2003. View at Publisher · View at Google Scholar
  132. G. L. Schwartz and S. T. Turner, “Screening for primary aldosteronism in essential hypertension: diagnostic accuracy of the ratio of plasma aldosterone concentration to plasma renin activity,” Clinical Chemistry, vol. 51, no. 2, pp. 386–394, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. G. P. Rossi, G. Bernini, C. Caliumi et al., “A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients,” Journal of the American College of Cardiology, vol. 48, no. 11, pp. 2293–2300, 2006. View at Publisher · View at Google Scholar · View at PubMed
  134. L. Mosso, C. Carvajal, A. Gonzalez et al., “Primary aldosteronism and hypertensive disease,” Hypertension, vol. 42, no. 2, pp. 161–165, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. B. Strauch, T. Zelinka, M. Hampf, R. Bernhardt, and J. Widimsky Jr., “Prevalence of primary hyperaldosteronism in moderate to severe hypertension in the Central Europe region,” Journal of Human Hypertension, vol. 17, no. 5, pp. 349–352, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. M. Stowasser and R. D. Gordon, “Primary aldosteronism—careful investigation is essential and rewarding,” Molecular and Cellular Endocrinology, vol. 217, no. 1-2, pp. 33–39, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. P. Mulatero, R. G. Dluhy, G. Giacchetti, M. Boscaro, F. Veglio, and P. M. Stewart, “Diagnosis of primary aldosteronism: from screening to subtype differentiation,” Trends in Endocrinology and Metabolism, vol. 16, no. 3, pp. 114–119, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. D. A. Calhoun, M. K. Nishizaka, M. A. Zaman, R. B. Thakkar, and P. Weissman, “High prevalence of primary aldosteronism among black and white subjects with resistant hypertension,” Hypertension, vol. 40, pp. 892–896, 2002. View at Google Scholar
  139. B. J. Gallay, S. Ahmad, L. Xu, B. Toivola, and R. C. Davidson, “Screening for primary hyperaldosteronism without discontinuing hypertensive medications: plasma aldosterone-renin ratio,” American Journal of Kidney Diseases, vol. 37, pp. 699–705, 2001. View at Google Scholar
  140. I. K. Eide, P. A. Torjesen, A. Drolsum, A. Babovic, and N. P. Lilledahl, “Low-renin status in therapy-resistant hypertension: a clue to efficient treatment,” Journal of Hypertension, vol. 22, no. 11, pp. 2217–2226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. N. Martell, M. Rodriguez-Cerrillo, D. E. Grobee et al., “High prevalence of secondary hypertension and insulin resistance in patients with refractory hypertension,” Blood Press, vol. 12, pp. 149–154, 2003. View at Google Scholar
  142. G. E. Umpierrez, P. Cantey, D. Smiley et al., “Primary Aldosteronism in diabetic subjects with resistant hypertension,” Diabetes Care, vol. 30, no. 7, pp. 1699–1703, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. S. Douma, K. Petidis, M. Doumas et al., “Prevalence of primary hyperaldosteronism in resistant hypertension: a retrospective observational study,” Lancet, vol. 371, no. 9628, pp. 1921–1926, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. C. C. Gonzaga, K. K. Gaddam, M. I. Ahmed et al., “Severity of obstructive sleep apnea is related to aldosterone status in subjects with resistant hypertension,” Journal of Clinical Sleep Medicine, vol. 6, no. 4, pp. 363–368, 2010. View at Google Scholar
  145. A. Di Murro, L. Petramala, D. Cotesta et al., “Renin-angiotensin-aldosterone system in patients with sleep apnoea: prevalence of primary aldosteronism,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 11, no. 3, pp. 165–172, 2010. View at Publisher · View at Google Scholar · View at PubMed
  146. D. A. Sica, “Endocrine causes of secondary hypertension,” Journal of Clinical Hypertension, vol. 10, no. 7, pp. 534–540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Mazza, M. Armigliato, S. Zamboni et al., “Endocrine arterial hypertension: therapeutic approach in clinical practice,” Minerva Endocrinologica, vol. 33, no. 4, pp. 297–312, 2008. View at Google Scholar · View at Scopus
  148. J. Coresh, G. L. Wei, G. McQuillan et al., “Prevalence of high blood pressure and elevated serum creatinine level in the United States: findings from the third national health and nutrition examination survey (1988–1994),” Archives of Internal Medicine, vol. 161, no. 9, pp. 1207–1216, 2001. View at Google Scholar · View at Scopus
  149. G. Mancia, G. de Backer, A. Dominiczak et al., “2007 Guidelines for the Management of Arterial Hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC),” Journal of Hypertension, vol. 25, no. 6, pp. 1105–1187, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  150. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. A. S. Levey, M. V. Rocco, S. Anderson et al., “K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease,” American Journal of Kidney Diseases, vol. 43, no. 5, pp. 1–290, 2004. View at Google Scholar · View at Scopus
  152. W. C. Cushman, C. E. Ford, J. A. Cutler et al., “Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attact trial (ALLHAT),” Journal of Clinical Hypertension, vol. 4, no. 6, pp. 393–404, 2002. View at Google Scholar
  153. M. G. Saelen, L. K. Prøsch, H. Gudmundsdottir et al., “Controlling systolic blood pressure is difficult in patients with diabetic kidney disease exhibiting moderate-to-severe reductions in renal function,” Blood Pressure, vol. 14, no. 3, pp. 170–176, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  154. N. M. Kaplan, “Resistant hypertension,” Journal of Hypertension, vol. 23, no. 8, pp. 1441–1444, 2005. View at Google Scholar
  155. V. M. Campese, N. Mitra, and D. Sandee, “Hypertension in renal parenchymal disease: why is it so resistant to treatment?” Kidney International, vol. 69, no. 6, pp. 967–973, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  156. G. M. Singer, M. Izhar, and H. R. Black, “Goal-oriented hypertension management: translating clinical trials to practice,” Hypertension, vol. 40, no. 4, pp. 464–469, 2002. View at Publisher · View at Google Scholar · View at Scopus
  157. J. P. Casas, W. Chua, S. Loukogeorgakis et al., “Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis,” Lancet, vol. 366, no. 9502, pp. 2026–2033, 2005. View at Publisher · View at Google Scholar · View at PubMed
  158. ONTARGET Investigators, “Telmisartan, ramipril, or both in patients at high risk for vascular events,” New England Journal of Medicine, vol. 358, pp. 1547–1559, 2008. View at Google Scholar
  159. J. F. Mann, R. E. Schmieder, M. McQueen et al., “Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial,” Lancet, vol. 372, no. 9638, pp. 547–553, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  160. P. A. Sarafidis and G. L. Bakris, “Renin-angiotensin blockade and kidney disease,” Lancet, vol. 372, no. 9638, pp. 511–512, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  161. R. D. Safian and S. C. Textor, “Renal-artery stenosis,” New England Journal of Medicine, vol. 344, no. 6, pp. 431–442, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  162. C. J. White, “Catheter-based therapy for atherosclerotic renal artery stenosis,” Circulation, vol. 113, no. 11, pp. 1464–1473, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  163. R. A. Aqel, G. J. Zoghbi, S. A. Baldwin et al., “Prevalence of renal artery stenosis in high-risk veterans referred to cardiac catheterization,” Journal of Hypertension, vol. 21, no. 6, pp. 1157–1162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. R. T. Tumelero, N. T. Duda, A. P. Tognon, and M. Thiesen, “Prevalence of renal artery stenosis in 1,656 patients who have undergone cardiac catheterization,” Arquivos Brasileiros de Cardiologia, vol. 87, no. 3, pp. 213–253, 2006. View at Google Scholar · View at Scopus
  165. G. H. Anderson Jr., N. Blakeman, and D. H. P. Streeten, “The effect of age on prevalence of secondary forms of hypertension in 4429 consecutively referred patients,” Journal of Hypertension, vol. 12, no. 5, pp. 609–615, 1994. View at Publisher · View at Google Scholar · View at Scopus
  166. J. J. Crowley, R. M. Santos, R. H. Peter et al., “Progression of renal artery stenosis in patients undergoing cardiac catheterization,” American Heart Journal, vol. 136, no. 5, pp. 913–918, 1998. View at Publisher · View at Google Scholar · View at Scopus
  167. T. Leiner, M. W. de Haan, P. J. Nelemans, J. M. Engelshoven, and G. B. C. Vasbinder, “Contemporary imaging techniques for the diagnosis of renal artery stenosis,” European Radiology, vol. 15, no. 11, pp. 2219–2229, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  168. ASTRAL Investigators, “Revascularization versus medical therapy for renal artery stenosis,” New England Journal of Medicine, vol. 361, pp. 1953–1962, 2009. View at Google Scholar
  169. C. J. Cooper, T. P. Murphy, A. Matsumoto et al., “Stent revascularization for the prevention of cardiovascular and renal events among patients with renal artery stenosis and systolic hypertension: rationale and design of the CORAL trial,” American Heart Journal, vol. 152, no. 1, pp. 59–66, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  170. J. J. Caro, M. Salas, J. L. Speckman, G. Raggio, and J. D. Jackson, “Persistence with treatment for hypertension in actual practice,” Canadian Medical Association Journal, vol. 160, no. 1, pp. 31–37, 1999. View at Google Scholar · View at Scopus
  171. G. Mazzaglia, L. G. Mantovani, M. C. J. M. Sturkenboom et al., “Patterns of persistence with antihypertensive medications in newly diagnosed hypertensive patients in Italy: a retrospective cohort study in primary care,” Journal of Hypertension, vol. 23, no. 11, pp. 2093–2100, 2005. View at Google Scholar · View at Scopus
  172. B. L. G. van Wijk, O. H. Klungel, E. R. Heerdink, and A. de Boer, “Rate and determinants of 10-year persistence with antihypertensive drugs,” Journal of Hypertension, vol. 23, no. 11, pp. 2101–2107, 2005. View at Google Scholar · View at Scopus
  173. B. Vrijens, G. Vincze, P. Kristanto, J. Urquhart, and M. Burnier, “Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories,” British Medical Journal, vol. 336, no. 7653, pp. 1114–1117, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  174. G. Corrao, A. Zambon, A. Parodi et al., “Discontinuation of and changes in drug therapy for hypertension among newly-treated patients: a population-based study in Italy,” Journal of Hypertension, vol. 26, no. 4, pp. 819–824, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  175. P. R. Conlin, W. C. Gerth, J. Fox, J. B. Roehm, and S. J. Boccuzzi, “Four-year persistence patterns among patients initiating therapy with the angiotensin II receptor antagonist losartan versus other antihypertensive drug classes,” Clinical Therapeutics, vol. 23, no. 12, pp. 1999–2010, 2001. View at Publisher · View at Google Scholar · View at Scopus
  176. W. A. de Souza, M. Sabha, F. de Faveri Favero, G. Bergsten-Mendes, J. C. Yugar-Toledo, and H. Moreno, “Intensive monitoring of adherence to treatment helps to identify "true" resistant hypertension,” Journal of Clinical Hypertension, vol. 11, no. 4, pp. 183–191, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  177. J. Park and V. Campese, “Clinical characteristics of resistant hypertension: the importance of compliance and the role of diagnostic evaluation in delineating pathogenesis,” Journal of Clinical Hypertension, vol. 9, no. 1, pp. 7–12, 2007. View at Google Scholar · View at Scopus
  178. D. J. Hyman and V. N. Pavlik, “Self-reported hypertension treatment practices among primary care physicians: blood pressure thresholds, drug choices, and the role of guidelines and evidence-based medicine,” Archives of Internal Medicine, vol. 160, no. 15, pp. 2281–2286, 2000. View at Google Scholar · View at Scopus
  179. S. A. Oliveria, P. Lapuerta, B. D. McCarthy, G. J. L'Italien, D. R. Berlowitz, and S. M. Asch, “Physician-related barriers to the effective management of uncontrolled hypertension,” Archives of Internal Medicine, vol. 162, no. 4, pp. 413–420, 2002. View at Google Scholar · View at Scopus
  180. C. L. Trewet and M. E. Ernst, “Resistant hypertension: identifying causes and optimizing treatment regimens,” Southern Medical Journal, vol. 101, no. 2, pp. 166–173, 2008. View at Google Scholar · View at Scopus
  181. L. S. Phillips, W. T. Branch, C. B. Cook et al., “Clinical inertia,” Annals of Internal Medicine, vol. 135, no. 9, pp. 825–834, 2001. View at Google Scholar · View at Scopus
  182. E. M. Furmaga, F. E. Cunningham, W. C. Cushman et al., “National utilization of antihypertensive medications from 2000–2006 in the Veterans Health Administration: focus on thiazides diuretics,” Journal of Clinical Hypertension, vol. 10, pp. 770–778, 2008. View at Google Scholar
  183. B. M. Egan, Y. Zhao, and R. N. Axon, “US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008,” Journal of the American Medical Association, vol. 303, no. 20, pp. 2043–2050, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  184. E. Falaschetti, M. Chaudhury, J. Mindell, and N. Poulter, “Continued improvement in hypertension management in England: results from the health survey for England 2006,” Hypertension, vol. 53, no. 3, pp. 480–486, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  185. N. H. McInnis, G. Fodor, M. Moy Lum-Kwong, and F. H. H. Leenen, “Antihypertensive medication use and blood pressure control: a community-based cross-sectional survey (ON-BP),” American Journal of Hypertension, vol. 21, no. 11, pp. 1210–1215, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  186. T. G. Pickering, J. E. Hall, L. J. Appel et al., “Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans—a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on high blood pressure research,” Circulation, vol. 111, no. 5, pp. 697–716, 2005. View at Publisher · View at Google Scholar · View at PubMed
  187. M. Moser and J. F. Setaro, “Resistant or difficult-to-control hypertension,” New England Journal of Medicine, vol. 355, no. 4, pp. 385–392, 2006. View at Publisher · View at Google Scholar · View at PubMed
  188. D. A. Calhoun, D. Jones, S. Textor et al., “Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research,” Circulation, vol. 117, pp. e510–e526, 2008. View at Google Scholar
  189. P. A. Sarafidis and G. L. Bakris, “State of hypertension management in the United States: confluence of risk factors and the prevalence of resistant hypertension,” Journal of Clinical Hypertension, vol. 10, no. 2, pp. 130–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  190. J. Redon, C. Campos, M. L. Narciso, J. L. Rodicio, J. M. Pascual, and L. M. Ruilope, “Prognostic value of ambulatory blood pressure monitoring in refractory hypertension: a prospective study,” Hypertension, vol. 31, no. 2, pp. 712–718, 1998. View at Google Scholar · View at Scopus
  191. S. D. Pierdomenico, D. Lapenna, A. Bucci et al., “Cardiovascular outcome in treated hypertensive patients with responder, masked, false resistant, and true resistant hypertension,” American Journal of Hypertension, vol. 18, no. 11, pp. 1422–1428, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  192. M. A. Brown, M. L. Buddle, and A. Martin, “Is resistant hypertension really resistant?” American Journal of Hypertension, vol. 14, no. 12, pp. 1263–1269, 2001. View at Publisher · View at Google Scholar · View at Scopus
  193. M. K. Nishizaka, M. A. Zaman, D. A. Calhoun et al., “Efficacy of low-dose spironolactone in subjects with resistant hypertension,” American Journal of Hypertension, vol. 16, no. 11, pp. 925–930, 2003. View at Publisher · View at Google Scholar · View at Scopus
  194. E. Pimenta, K. K. Gaddam, S. Oparil et al., “Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial,” Hypertension, vol. 54, no. 3, pp. 475–481, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  195. L. E. Ramsay, J. H. Silas, and S. Freestone, “Diuretic treatment of resistant hypertension,” British Medical Journal, vol. 281, no. 6248, pp. 1101–1103, 1980. View at Google Scholar
  196. J. Ouzan, C. Perault, A. M. Lincoff, E. Carré, and M. Mertes, “The role of spironolactone in the treatment of patients with refractory hypertension,” American Journal of Hypertension, vol. 15, no. 4, pp. 333–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  197. A. Mahmud, M. Mahgoub, M. Hall, and J. Feely, “Does aldosterone-to-renin ratio predict the antihypertensive effect of the aldosterone antagonist spironolactone?” American Journal of Hypertension, vol. 18, no. 12, pp. 1631–1635, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  198. C. Saha, G. J. Eckert, W. T. Ambrosius et al., “Improvement in blood pressure with inhibition of the epithelial sodium channel in blacks with hypertension,” Hypertension, vol. 46, no. 3, pp. 481–487, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  199. Y. Sharabi, E. Adler, A. Shamis, N. Nussinovitch, A. Markovitz, and E. Grossman, “Efficacy of add-on aldosterone receptor blocker in uncontrolled hypertension,” American Journal of Hypertension, vol. 19, no. 7, pp. 750–755, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  200. F. de Souza, E. Muxfeldt, R. Fiszman, and G. Salles, “Efficacy of spironolactone therapy in patients with true resistant hypertension,” Hypertension, vol. 55, no. 1, pp. 147–152, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  201. S. J. Hood, K. P. Taylor, M. J. Ashby, and M. J. Brown, “The Spironolactone, Amiloride, Losartan, and Thiazide (SALT) double-blind crossover trial in patients with low-renin hypertension and elevated aldosterone-renin ratio,” Circulation, vol. 116, no. 3, pp. 268–275, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  202. D. A. Lane, S. Shah, and D. G. Beevers, “Low-dose spironolactone in the management of resistant hypertension: a surveillance study,” Journal of Hypertension, vol. 25, no. 4, pp. 891–894, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  203. N. Chapman, J. Dobson, S. Wilson et al., “Effect of spironolactone on blood pressure in subjects with resistant hypertension,” Hypertension, vol. 49, no. 4, pp. 839–845, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  204. D. A. Lane and D. G. Beevers, “Amiloride 10 mg is less effective than spironolactone 25 mg in patients with hypertension resistant to a multidrug regime including an angiotensin-blocking agent,” Journal of Hypertension, vol. 25, no. 12, pp. 2515–2516, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  205. H. K. Parthasarathy, K. Alhashmi, A. D. McMahon et al., “Does the ratio of serum aldosterone to plasma renin activity predict the efficacy of diuretics in hypertension? Results of RENALDO,” Journal of Hypertension, vol. 28, no. 1, pp. 170–177, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  206. R. C. Hermida, D. E. Ayala, J. R. Fernandez, and C. Calvo, “Chronotherapy improves blood pressure control and reverts the nondipper pattern in patients with resistant hypertension,” Hypertension, vol. 51, no. 1, pp. 69–76, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  207. R. Minutolo, F. B. Gabbai, S. Borrelli et al., “Changing the timing of antihypertensive therapy to reduce nocturnal blood pressure in CKD: an 8-week uncontrolled trial,” American Journal of Kidney Diseases, vol. 50, no. 6, pp. 908–917, 2007. View at Publisher · View at Google Scholar · View at PubMed
  208. C. Tsioufis, A. Kasiakogias, C. Thomopoulos, A. Manolis, and C. Stefanadis, “Managing hypertension in obstructive sleep apnea: the interplay of continuous positive airway pressure, medication and chronotherapy,” Journal of Hypertension, vol. 28, no. 5, pp. 875–882, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  209. M. A. Weber, H. Black, G. Bakris et al., “A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial,” Lancet, vol. 374, no. 9699, pp. 1423–1431, 2009. View at Publisher · View at Google Scholar
  210. G. L. Bakris, L. H. Lindholm, H. R. Black et al., “Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial,” Hypertension, vol. 56, no. 5, pp. 824–830, 2010. View at Publisher · View at Google Scholar · View at PubMed
  211. J. J. Oliver, J. W. Dear, and D. J. Webb, “Clinical potential of combined organic nitrate and phosphodiesterase type 5 inhibitor in treatment-resistant hypertension,” Hypertension, vol. 56, no. 1, pp. 62–67, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  212. M. Doumas, D. Guo, and V. Papademetriou, “Carotid baroreceptor stimulation as a therapeutic target in hypertension and other cardiovascular conditions,” Expert Opinion on Therapeutic Targets, vol. 13, no. 4, pp. 413–425, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  213. M. Doumas, C. Faselis, and V. Papademetriou, “Renal sympathetic denervation and systemic hypertension,” American Journal of Cardiology, vol. 105, no. 4, pp. 570–576, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  214. I. J. M. Scheffers, A. A. Kroon, J. Schmidli et al., “Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study,” Journal of the American College of Cardiology, vol. 56, no. 15, pp. 1254–1258, 2010. View at Publisher · View at Google Scholar · View at PubMed
  215. H. Krum, M. Schlaich, R. Whitbourn et al., “Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study,” Lancet, vol. 373, no. 9671, pp. 1275–1281, 2009. View at Publisher · View at Google Scholar · View at Scopus