Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2012, Article ID 307315, 12 pages
http://dx.doi.org/10.1155/2012/307315
Review Article

Angiotensin-Converting Enzyme 2: The First Decade

Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

Received 21 July 2011; Accepted 25 August 2011

Academic Editor: Mohan K. Raizada

Copyright © 2012 Nicola E. Clarke and Anthony J. Turner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Tipnis, N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner, “A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase,” Journal of Biological Chemistry, vol. 275, no. 43, pp. 33238–33243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Donoghue, F. Hsieh, E. Baronas et al., “A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9,” Circulation Research, vol. 87, no. 5, pp. E1–E9, 2000. View at Google Scholar · View at Scopus
  3. C. Vickers, P. Hales, V. Kaushik et al., “Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14838–14843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. N. A. Dales, A. E. Gould, J. A. Brown et al., “Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors,” Journal of the American Chemical Society, vol. 124, no. 40, pp. 11852–11853, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Rushworth, J. L. Guy, and A. J. Turner, “Residues affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and ACE2) identified by site-directed mutagenesis,” FEBS Journal, vol. 275, no. 23, pp. 6033–6042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Z. Kalea and D. Batlle, “Apelin and ACE2 in cardiovascular disease,” Current Opinion in Investigational Drugs, vol. 11, no. 3, pp. 273–282, 2010. View at Google Scholar · View at Scopus
  7. P. Towler, B. Staker, S. G. Prasad et al., “ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17996–18007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. L. Guy, R. M. Jackson, K. R. Acharya, E. D. Sturrock, N. M. Hooper, and A. J. Turner, “Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence,” Biochemistry, vol. 42, no. 45, pp. 13185–13192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Guy, R. M. Jackson, H. A. Jensen, N. M. Hooper, and A. J. Turner, “Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis,” FEBS Journal, vol. 272, no. 14, pp. 3512–3520, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Rella, C. A. Rushworth, J. L. Guy, A. J. Turner, T. Langer, and R. M. Jackson, “Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors,” Journal of Chemical Information and Modeling, vol. 46, no. 2, pp. 708–716, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Ferrario, J. Jessup, M. C. Chappell et al., “Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2,” Circulation, vol. 111, no. 20, pp. 2605–2610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Byrnes, S. Gross, C. Ellard, K. Connolly, S. Donahue, and D. Picarella, “Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice,” Inflammation Research, vol. 58, no. 11, pp. 819–827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. F. J. Warner, R. A. Lew, A. I. Smith, D. W. Lambert, N. M. Hooper, and A. J. Turner, “Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells,” Journal of Biological Chemistry, vol. 280, no. 47, pp. 39353–39362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Hamming, W. Timens, M. L. C. Bulthuis, A. T. Lely, G. J. Navis, and H. van Goor, “Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis,” Journal of Pathology, vol. 203, no. 2, pp. 631–637, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Paizis, C. Tikellis, M. E. Cooper et al., “Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2,” Gut, vol. 54, no. 12, pp. 1790–1796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. F. Doobay, L. S. Talman, T. D. Obr, X. Tian, R. L. Davisson, and E. Lazartigues, “Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 292, no. 1, pp. R373–R381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Xu, S. Sriramula, and E. Lazartigues, “ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 300, no. 4, pp. R804–R817, 2011. View at Publisher · View at Google Scholar
  18. D. I. Diz, M. A. Garcia-Espinosa, S. Gegick et al., “Injections of angiotensin-converting enzyme 2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats,” Experimental Physiology, vol. 93, no. 5, pp. 694–700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Feng, H. Xia, Y. Cai et al., “Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension,” Circulation Research, vol. 106, no. 2, pp. 373–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Xia, Y. Feng, T. D. Obr, P. J. Hickman, and E. Lazartigues, “Angiotensin II type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice,” Hypertension, vol. 53, no. 2, pp. 210–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. W. Lambert, M. Yarski, F. J. Warner et al., “Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2),” Journal of Biological Chemistry, vol. 280, no. 34, pp. 30113–30119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Yamazato, Y. Yamazato, C. Sun, C. Diez-Freire, and M. K. Raizada, “Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats,” Hypertension, vol. 49, no. 4, pp. 926–931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Rentzsch, M. Todiras, R. Iliescu et al., “Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function,” Hypertension, vol. 52, no. 5, pp. 967–973, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. X. Liu, Q. Hu, Y. Wang et al., “Angiotensin-converting enzyme (ACE) 2 overexpression ameliorates glomerular injury in a rat model of diabetic nephropathy: a comparison with ACE inhibition,” Molecular Medicine, vol. 17, no. 1-2, pp. 59–69, 2011. View at Publisher · View at Google Scholar
  25. C. Díez-Freire, J. Vázquez, M. F. C. de Adjounian et al., “ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR,” Physiological Genomics, vol. 27, no. 1, pp. 12–19, 2006. View at Publisher · View at Google Scholar
  26. M. Yamazato, A. J. Ferreira, Y. Yamazato et al., “Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats,” Journal of the Renin-Angiotensin-Aldosterone System. In press. View at Publisher · View at Google Scholar
  27. M. I. Phillips and C. Sumners, “Angiotensin II in central nervous system physiology,” Regulatory Peptides, vol. 78, no. 1–3, pp. 1–11, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Campagnole-Santos, S. B. Heringer, E. N. Batista, M. C. Khosla, and R. A. S. Santos, “Differential baroreceptor reflex modulation by centrally infused angiotensin peptides,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 263, no. 1, pp. R89–R94, 1992. View at Google Scholar · View at Scopus
  29. S. Heringer-Walther, E. N. Batista, T. Walther, M. C. Khosla, R. A. S. Santos, and M. J. Campagnole-Santos, “Baroreflex improvement in SHR after ACE inhibition involves angiotensin-(1-7),” Hypertension, vol. 37, no. 5, pp. 1309–1314, 2001. View at Google Scholar · View at Scopus
  30. H. Xia and E. Lazartigues, “Angiotensin-converting enzyme 2: central regulator for cardiovascular function,” Current Hypertension Reports, vol. 12, no. 3, pp. 170–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Crackower, R. Sarao, G. Y. Oudit et al., “Angiotensin-converting enzyme 2 is an essential regulator of heart function,” Nature, vol. 417, no. 6891, pp. 822–828, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. U. Danilczyk and J. M. Penninger, “Angiotensin-converting enzyme II in the heart and the kidney,” Circulation Research, vol. 98, no. 4, pp. 463–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Yamamoto, M. Ohishi, T. Katsuya et al., “Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II,” Hypertension, vol. 47, no. 4, pp. 718–726, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. B. Gurley, A. Allred, T. H. Le et al., “Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice,” Journal of Clinical Investigation, vol. 116, no. 8, pp. 2218–2225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. W. Wong, G. Y. Oudit, H. Reich et al., “Loss of Angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury,” American Journal of Pathology, vol. 171, no. 2, pp. 438–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. B. Gurley and T. M. Coffman, “Angiotensin-converting enzyme 2 gene targeting studies in mice: mixed messages,” Experimental Physiology, vol. 93, no. 5, pp. 538–542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Bodiga, J. C. Zhong, W. Wang et al., “Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47phox NADPH oxidase subunit,” Cardiovascular Research, vol. 91, no. 1, pp. 151–161, 2011. View at Publisher · View at Google Scholar
  38. Z. Kassiri, J. Zhong, D. Guo et al., “Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction,” Circulation: Heart Failure, vol. 2, no. 5, pp. 446–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. G. I. Rice, D. A. Thomas, P. J. Grant, A. J. Turner, and N. M. Hooper, “Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism,” Biochemical Journal, vol. 383, no. 1, pp. 45–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. L. Grobe, A. P. Mecca, H. Mao, and M. J. Katovich, “Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 290, no. 6, pp. H2417–H2423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. L. Grobe, A. P. Mecca, M. Lingis et al., “Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7),” American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, no. 2, pp. H736–H742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Mercure, A. Yogi, G. E. Callera et al., “Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart,” Circulation Research, vol. 103, no. 11, pp. 1319–1326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. E. A. Tallant, C. M. Ferrario, and P. E. Gallagher, “Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 289, no. 4, pp. H1560–H1566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Qi, V. Shenoy, F. Wong et al., “Lentiviral mediated overexpression of Angiotensin-(1-7) attenuated ischemia-induced cardiac pathophysiology,” Experimental Physiology, vol. 96, no. 9, pp. 863–874, 2011. View at Publisher · View at Google Scholar
  45. C. I. Johnston, “Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repair, and remodeling,” Hypertension, vol. 23, no. 2, pp. 258–268, 1994. View at Google Scholar · View at Scopus
  46. R. C. J. J. Passier, J. F. M. Smits, M. J. A. Verluyten, and M. J. A. P. Daemen, “Expression and localization of renin and angiotensinogen in rat heart after myocardial infarction,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 271, no. 3, pp. H1040–H1048, 1996. View at Google Scholar · View at Scopus
  47. J. S. Silvestre, C. Heymes, A. Oubénaïssa et al., “Activation of cardiac aldosterone production in rat myocardial infarction. Effect of angiotensin II receptor blockade and role in cardiac fibrosis,” Circulation, vol. 99, no. 20, pp. 2694–2701, 1999. View at Google Scholar · View at Scopus
  48. M. M. Kittleson, K. M. Minhas, R. A. Irizarry et al., “Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure,” Physiological Genomics, vol. 21, pp. 299–307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. B. Goulter, M. J. Goddard, J. C. Allen, and K. L. Clark, “ACE2 gene expression is up-regulated in the human failing heart,” BMC Medicine, vol. 2, p. 19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. L. S. Zisman, R. S. Keller, B. Weaver et al., “Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2,” Circulation, vol. 108, no. 14, pp. 1707–1712, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. L. M. Burrell, J. Risvanis, E. Kubota et al., “Myocardial infarction increases ACE2 expression in rat and humans,” European Heart Journal, vol. 26, no. 4, pp. 369–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. M. P. Ocaranza, I. Godoy, J. E. Jalil et al., “Enalapril attenuates downregulation of angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat,” Hypertension, vol. 48, no. 4, pp. 572–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. J. C. Zhong, D. Y. Huang, Y. M. Yang et al., “Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats,” Hypertension, vol. 44, no. 6, pp. 907–912, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. A. V. Benjafield, W. Y. S. Wang, and B. J. Morris, “No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension,” American Journal of Hypertension, vol. 17, no. 7, pp. 624–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Tikellis, M. E. Cooper, K. Bialkowski et al., “Developmental expression of ACE2 in the SHR kidney: a role in hypertension?” Kidney International, vol. 70, no. 1, pp. 34–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Wakahara, T. Konoshita, S. Mizuno et al., “Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio,” Endocrinology, vol. 148, no. 5, pp. 2453–2457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Konoshita, S. Wakahara, S. Mizuno et al., “Tissue gene expression of renin-angiotensin system in human type 2 diabetic nephropathy,” Diabetes Care, vol. 29, no. 4, pp. 848–852, 2006. View at Google Scholar · View at Scopus
  58. M. Ye, J. Wysocki, J. William, M. J. Soler, I. Cokic, and D. Batlle, “Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes,” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 3067–3075, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Wysocki, M. Ye, M. J. Soler et al., “ACE and ACE2 activity in diabetic mice,” Diabetes, vol. 55, no. 7, pp. 2132–2139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Tikellis, C. I. Johnston, J. M. Forbes et al., “Characterization of renal angiotensin—converting enzyme 2 in diabetic nephropathy,” Hypertension, vol. 41, no. 3, pp. 392–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. A. T. Lely, I. Hamming, H. van Goor, and G. J. Navis, “Renal ACE2 expression in human kidney disease,” Journal of Pathology, vol. 204, no. 5, pp. 587–593, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Mizuiri, H. Hemmi, M. Arita et al., “Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls,” American Journal of Kidney Diseases, vol. 51, no. 4, pp. 613–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Y. Oudit, A. M. Herzenberg, Z. Kassiri et al., “Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis,” American Journal of Pathology, vol. 168, no. 6, pp. 1808–1820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. M. J. Soler, J. Wysocki, M. Ye, J. Lloveras, Y. Kanwar, and D. Batlle, “ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice,” Kidney International, vol. 72, no. 5, pp. 614–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Tikellis, K. Bialkowski, J. Pete et al., “ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes,” Diabetes, vol. 57, no. 4, pp. 1018–1025, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Shao, M. He, L. Zhou, T. Yao, Y. Huang, and L. M. Lu, “Chronic angiotensin (1-7) injection accelerates STZ-induced diabetic renal injury,” Acta Pharmacologica Sinica, vol. 29, no. 7, pp. 829–837, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. R. A. S. Santos, A. C. S. Silva, C. Maric et al., “Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8258–8263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Tikellis, P. J. Wookey, R. Candido, S. Andrikopoulos, M. C. Thomas, and M. E. Cooper, “Improved islet morphology after blockade of the renin-angiotensin system in the ZDF rat,” Diabetes, vol. 53, no. 4, pp. 989–997, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. S. M. Bindom and E. Lazartigues, “The sweeter side of ACE2: physiological evidence for a role in diabetes,” Molecular and Cellular Endocrinology, vol. 302, no. 2, pp. 193–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Zhang, J. Wada, A. Yasuhara et al., “The role for HNF-1β-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells,” PLoS ONE, vol. 2, no. 5, p. e414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Fukui, Q. Yang, Y. Cao et al., “The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation,” Cell Metabolism, vol. 2, no. 6, pp. 373–384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Yasuhara, J. Wada, S. M. Malakauskas et al., “Collectrin is involved in the development of salt-sensitive hypertension by facilitating the membrane trafficking of apical membrane proteins via interaction with soluble N-ethylmaleiamide-sensitive factor attachment protein receptor complex,” Circulation, vol. 118, no. 21, pp. 2146–2155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. S. M. Malakauskas, W. M. Kourany, Y. Z. Xiao et al., “Increased insulin sensitivity in mice lacking collectrin, a downstream target of HNF-1α,” Molecular Endocrinology, vol. 23, no. 6, pp. 881–892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. U. Danilczyk, R. Sarao, C. Remy et al., “Essential role for collectrin in renal amino acid transport,” Nature, vol. 444, no. 7122, pp. 1088–1091, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. S. M. Malakauskas, H. Quan, T. A. Fields et al., “Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin,” American Journal of Physiology—Renal Physiology, vol. 292, no. 2, pp. F533–F544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Kowalczuk, A. Bröer, N. Tietze, J. M. Vanslambrouck, J. E. J. Rasko, and S. Bröer, “A protein complex in the brush-border membrane explains a Hartnup disorder allele,” FASEB Journal, vol. 22, no. 8, pp. 2880–2887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. W. Li, M. J. Moore, N. Vasllieva et al., “Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus,” Nature, vol. 426, no. 6965, pp. 450–454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. F. Li, W. Li, M. Farzan, and S. C. Harrison, “Structural biology: structure of SARS coronavirus spike receptor-binding domain complexed with receptor,” Science, vol. 309, no. 5742, pp. 1864–1868, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Kuba, Y. Imai, S. Rao et al., “A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury,” Nature Medicine, vol. 11, no. 8, pp. 875–879, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Imai, K. Kuba, S. Rao et al., “Angiotensin-converting enzyme 2 protects from severe acute lung failure,” Nature, vol. 436, no. 7047, pp. 112–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. I. Glowacka, S. Bertram, P. Herzog et al., “Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63,” Journal of Virology, vol. 84, no. 2, pp. 1198–1205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Koka, R. H. Xiao, A. C. K. Chung, W. Wang, L. D. Truong, and H. Y. Lan, “Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway,” American Journal of Pathology, vol. 172, no. 5, pp. 1174–1183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Yamamuro, M. Yoshimura, M. Nakayama et al., “Aldosterone, but not angiotensin II, reduces angiotensin converting enzyme 2 gene expression levels in cultured neonatal rat cardiomyocytes,” Circulation Journal, vol. 72, no. 8, pp. 1346–1350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. P. E. Gallagher, C. M. Ferrario, and E. A. Tallant, “MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides,” American Journal of Physiology—Cell Physiology, vol. 295, no. 5, pp. C1169–C1174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. J. C. Zhong, J. Y. Ye, H. Y. Jin et al., “Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression,” Regulatory Peptides, vol. 166, no. 1–3, pp. 90–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. J. A. Jessup, P. E. Gallagher, D. B. Averill et al., “Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats,” American Journal of Physiology Heart Circirculation Physiology, vol. 291, no. 5, pp. H2166–H2172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. M. L. Huang, X. Li, Y. Meng et al., “Upregulation of angiotensin-converting enzyme (ACE) 2 in hepatic fibrosis by ACE inhibitors,” Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 1, pp. e1–e6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Zhang, Y. Wu, M. Zhao et al., “Role of HIF-1α in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 297, no. 4, pp. L631–L640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. Tan, J. Wu, H. Ma et al., “Regulation of angiotensin-converting enzyme 2 and Mas receptor by Ang-(1-7) in heart and kidney of spontaneously hypertensive rats,” Journal of the Renin-Angiotensin-Aldosterone System. In press. View at Publisher · View at Google Scholar
  90. P. E. Gallagher, C. M. Ferrario, and E. A. Tallant, “Regulation of ACE2 in cardiac myocytes and fibroblasts,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 295, no. 6, pp. H2373–H2379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. V. Shenoy, J. L. Grobe, Y. Qi et al., “17β-Estradiol modulates local cardiac renin-angiotensin system to prevent cardiac remodeling in the DOCA-salt model of hypertension in rats,” Peptides, vol. 30, no. 12, pp. 2309–2315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. J. A. Stewart, D. O. Cashatt, A. C. Borck, J. E. Brown, and W. E. Carver, “17β-estradiol modulation of angiotensin II-stimulated response in cardiac fibroblasts,” Journal of Molecular and Cellular Cardiology, vol. 41, no. 1, pp. 97–107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. B. Gálvez-Prieto, J. Bolbrinker, P. Stucchi et al., “Comparative expression analysis of the renin—angiotensin system components between white and brown perivascular adipose tissue,” Journal of Endocrinology, vol. 197, no. 1, pp. 55–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Gupte, C. M. Boustany-Kari, K. Bharadwaj et al., “ACE2 is expressed in mouse adipocytes and regulated by a high-fat diet,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 295, no. 3, pp. R781–R788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. S. Coelho, K. L. Lopes, R. D. A. Freitas et al., “High sucrose intake in rats is associated with increased ACE2 and angiotensin-(1-7) levels in the adipose tissue,” Regulatory Peptides, vol. 162, no. 1–3, pp. 61–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Iwata, J. E. S. Enciso, and B. H. Greenberg, “Selective and specific regulation of ectodomain shedding of angiotensin-converting enzyme 2 by tumor necrosis factor α-converting enzyme,” American Journal of Physiology—Cell Physiology, vol. 297, no. 5, pp. C1318–C1329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. H. P. Jia, D. C. Look, P. Tan et al., “Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 297, no. 1, pp. L84–L96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. Z. W. Lai, I. Hanchapola, D. L. Steer, and A. I. Smith, “Angiotensin-converting enzyme 2 ectodomain shedding cleavage-site identification: determinants and constraints,” Biochemistry, vol. 50, no. 23, pp. 5182–5194, 2011. View at Publisher · View at Google Scholar
  99. D. W. Lambert, N. E. Clarke, N. M. Hooper, and A. J. Turner, “Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain,” FEBS Letters, vol. 582, no. 2, pp. 385–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Epelman, K. Shrestha, R. W. Troughton et al., “Soluble angiotensin-converting enzyme 2 in human heart failure: relation with myocardial function and clinical outcomes,” Journal of Cardiac Failure, vol. 15, no. 7, pp. 565–571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. R. A. Lew, F. J. Warner, I. Hanchapola et al., “Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor,” Experimental Physiology, vol. 93, no. 5, pp. 685–693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Y. Oudit, Z. Kassiri, C. Jiang et al., “SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS,” European Journal of Clinical Investigation, vol. 39, no. 7, pp. 618–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Haga, N. Yamamoto, C. Nakai-Murakami et al., “Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 22, pp. 7809–7814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Haga, N. Nagata, T. Okamura et al., “TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds,” Antiviral Research, vol. 85, no. 3, pp. 551–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Inoue, N. Tanaka, Y. Tanaka et al., “Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted,” Journal of Virology, vol. 81, no. 16, pp. 8722–8729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. J. L. Grobe, S. der Sarkissian, J. M. Stewart, J. G. Meszaros, M. K. Raizada, and M. J. Katoyich, “ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts,” Clinical Science, vol. 113, no. 7-8, pp. 357–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. J. A. H. Prada, A. J. Ferreira, M. J. Katovich et al., “Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents,” Hypertension, vol. 51, no. 5, pp. 1312–1317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Wysocki, M. Ye, E. Rodriguez et al., “Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension,” Hypertension, vol. 55, no. 1, pp. 90–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. M. J. Huentelman, J. L. Grobe, J. Vazquez et al., “Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats,” Experimental Physiology, vol. 90, no. 5, pp. 783–790, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. B. Dong, C. Zhang, J. B. Feng et al., “Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 7, pp. 1270–1276, 2008. View at Publisher · View at Google Scholar
  111. S. der Sarkissian, J. L. Grobe, L. Yuan et al., “Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology,” Hypertension, vol. 51, no. 3, pp. 712–718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. X. Zhao, H. Q. Yin, Q. T. Yu et al., “ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction,” Human Gene Therapy, vol. 21, no. 11, pp. 1545–1554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. A. J. Ferreira, V. Shenoy, Y. Yamazato et al., “Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 11, pp. 1048–1054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. A. J. Ferreira, V. Shenoy, Y. Qi et al., “Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases,” Experimental Physiology, vol. 96, no. 3, pp. 287–294, 2011. View at Publisher · View at Google Scholar
  115. R. A. Fraga-Silva, B. S. Sorg, M. Wankhede et al., “ACE2 activation promotes antithrombotic activity,” Molecular Medicine, vol. 16, no. 5-6, pp. 210–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. G. Y. Oudit, G. C. Liu, J. Zhong et al., “Human recombinant ACE2 reduces the progression of diabetic nephropathy,” Diabetes, vol. 59, no. 2, pp. 529–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Zhong, R. Basu, D. Guo et al., “Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction,” Circulation, vol. 122, no. 7, pp. 717–728, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Zhong, D. Guo, C. B. Chen et al., “Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2,” Hypertension, vol. 57, no. 2, pp. 314–322, 2011. View at Publisher · View at Google Scholar
  119. K. Kohlstedt, F. Shoghi, W. Müller-Esterl, R. Busse, and I. Fleming, “CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane,” Circulation Research, vol. 91, no. 8, pp. 749–756, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. K. Kohlstedt, R. Kellner, R. Busse, and I. Fleming, “Signaling via the angiotensin-converting enzyme results in the phosphorylation of the nonmuscle myosin heavy chain IIA,” Molecular Pharmacology, vol. 69, no. 1, pp. 19–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. K. Kohlstedt, R. P. Brandes, W. Müller-Esterl, R. Busse, and I. Fleming, “Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells,” Circulation Research, vol. 94, no. 1, pp. 60–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Kohlstedt, C. Gershome, M. Friedrich et al., “Angiotensin-converting enzyme (ACE) dimerization is the initial step in the ACE inhibitor-induced ACE signaling cascade in endothelial cells,” Molecular Pharmacology, vol. 69, no. 5, pp. 1725–1732, 2006. View at Publisher · View at Google Scholar
  123. I. Ignjacev-Lazich, E. Kintsurashvili, C. Johns et al., “Angiotensin-converting enzyme regulates bradykinin receptor gene expression,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 289, no. 5, pp. H1814–H1820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. H. A. Lucero, E. Kintsurashvili, M. E. Marketou, and H. Gavras, “Cell signaling, internalization, and nuclear localization of the angiotensin converting enzyme in smooth muscle and endothelial cells,” Journal of Biological Chemistry, vol. 285, no. 8, pp. 5555–5568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. S. F. Lichtenthaler, C. Haass, and H. Steiner, “Regulated intramembrane proteolysis—lessons from amyloid precursor protein processing,” Journal of Neurochemistry, vol. 117, no. 5, pp. 779–796, 2011. View at Publisher · View at Google Scholar
  126. X. Cao and T. C. Südhof, “A transcriptivety active complex of APP with Fe65 and histone acetyltransferase Tip60,” Science, vol. 293, no. 5527, pp. 115–120, 2001. View at Publisher · View at Google Scholar
  127. Y. Takahashi, S. Haga, Y. Ishizaka, and A. Mimori, “Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases,” Arthritis Research and Therapy, vol. 12, no. 3, p. R85, 2010. View at Publisher · View at Google Scholar