Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2012, Article ID 647856, 10 pages
http://dx.doi.org/10.1155/2012/647856
Research Article

Phytoestrogens Enhance the Vascular Actions of the Endocannabinoid Anandamide in Mesenteric Beds of Female Rats

1Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Junín 956, 5° Piso, C1113AAD Buenos Aires, Argentina
2Departamento de Bioquímica IIMHNO, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 5° Piso C1121ABG Buenos Aires, Argentina

Received 25 February 2011; Revised 12 October 2011; Accepted 12 October 2011

Academic Editor: Zafar Israili

Copyright © 2012 Roxana N. Peroni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Di Marzo, “The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation,” Pharmacological Research, vol. 60, no. 2, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Wheal, T. Bennett, M. D. Randall, and S. M. Gardiner, “Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats,” British Journal of Pharmacology, vol. 152, no. 5, pp. 717–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Wang, N. E. Kaminski, and D. H. Wang, “Endocannabinoid regulates blood pressure via activation of the transient receptor potential vanilloid type 1 in wistar rats fed a high-salt diet,” Journal of Pharmacology and Experimental Therapeutics, vol. 321, no. 2, pp. 763–769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Godlewski, S. O. Alapafuja, S. Bátkai et al., “Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects,” Chemistry and Biology, vol. 17, no. 11, pp. 1256–1266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Maccarrone, M. Bari, N. Battista, and A. Finazzi-Agrò, “Estrogen stimulates arachidonoylethanolamide release from human endothelial cells and platelet activation,” Blood, vol. 100, no. 12, pp. 4040–4048, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. R. N. Peroni, M. L. Orliac, T. Abramoff, M. L. Ribeiro, A. M. Franchi, and E. Adler-Graschinsky, “Participation of CGRP and prostanoids in the sex-linked differences of vascular anandamide effects in mesenteric beds of Sprague-Dawley rats,” European Journal of Pharmacology, vol. 557, no. 1, pp. 49–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. M. Zygmunt, J. Petersson, D. A. Andersson et al., “Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide,” Nature, vol. 400, no. 6743, pp. 452–457, 1999. View at Publisher · View at Google Scholar
  8. G. G. J. M. Kuiper, J. G. Lemmen, B. Carlsson et al., “Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β,” Endocrinology, vol. 139, no. 10, pp. 4252–4263, 1998. View at Google Scholar · View at Scopus
  9. M. J. J. de Kleijn, Y. T. van der Schouw, P. W. F. Wilson, D. E. Grobbee, and P. F. Jacques, “Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in postmenopausal U.S. women: the framingham study,” Journal of Nutrition, vol. 132, no. 2, pp. 276–282, 2002. View at Google Scholar · View at Scopus
  10. A. E. Lethaby, J. Brown, J. Marjoribanks, F. Kronenberg, H. Roberts, and J. Eden, “Phytoestrogens for vasomotor menopausal symptoms,” Cochrane Database of Systematic Reviews, no. 4, p. CD001395, 2007. View at Google Scholar · View at Scopus
  11. L. Thors, J. Eriksson, and C. J. Fowler, “Inhibition of the cellular uptake of anandamide by genistein and its analogue daidzein in cells with different levels of fatty acid amide hydrolase-driven uptake,” British Journal of Pharmacology, vol. 152, no. 5, pp. 744–750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. D. P. Lee, V. DeQuattro, G. C. Davison, S. Kimura, R. Barndt, and P. Sullivan, “Noradrenergic hyperactivity in primary hypertension; central and peripheral markers of both behavioral pathogenesis and efficacy of sympatholytic and relaxation therapy,” Clinical and Experimental Hypertension—Part A, vol. 10, no. 1, pp. 225–234, 1988. View at Google Scholar · View at Scopus
  13. R. C. M. Siow, F. Y. L. Li, D. J. Rowlands, P. de Winter, and G. E. Mann, “Cardiovascular targets for estrogens and phytoestrogens: transcriptional regulation of nitric oxide synthase and antioxidant defense genes,” Free Radical Biology and Medicine, vol. 42, no. 7, pp. 909–925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Siriviriyakul, S. Khemapech, K. Monsiri, and S. Patumraj, “The vascular effect of genistein: what is its mechanism, nitric oxide or PGI2?” Clinical Hemorheology and Microcirculation, vol. 34, no. 1-2, pp. 97–101, 2006. View at Google Scholar · View at Scopus
  15. P. Diel, R. B. Geis, A. Caldarelli et al., “The differential ability of the phytoestrogen genistein and of estradiol to induce uterine weight and proliferation in the rat is associated with a substance specific modulation of uterine gene expression,” Molecular and Cellular Endocrinology, vol. 221, no. 1-2, pp. 21–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. N. Peroni, M. L. Orliac, D. Becu-Villalobos, J. P. Huidobro-Toro, E. Adler-Graschinsky, and S. M. Celuch, “Sex-linked differences in the vasorelaxant effects of anandamide in vascular mesenteric beds: role of oestrogens,” European Journal of Pharmacology, vol. 493, no. 1-3, pp. 151–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. V. E. Mendizabal, E. C. Feleder, and E. Adler-Granschinsky, “Effects of the chronic in vivo administration of L-NAME on the contractile responses of the rat perfused mesenteric bed,” Journal of Autonomic Pharmacology, vol. 19, no. 4, pp. 241–248, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. K. L. Christensen and M. J. Mulvany, “Mesenteric arcade arteries contribute substantially to vascular resistance in conscious rats,” Journal of Vascular Research, vol. 30, no. 2, pp. 73–79, 1993. View at Google Scholar · View at Scopus
  19. G. R. Ross, U. Yallampalli, P. R. R. Gangula et al., “Adrenomedullin relaxes rat uterine artery: mechanisms and influence of pregnancy and estradiol,” Endocrinology, vol. 151, no. 9, pp. 4485–4493, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Shimozawa, K. Okajima, and N. Harada, “Estrogen and isoflavone attenuate stress-induced gastric mucosal injury by inhibiting decreases in gastric tissue levels of CGRP in ovariectomized rats,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 292, no. 2, pp. G615–G619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Wagner, L. Jiang, and L. Lehmann, “Phytoestrogens modulate the expression of 17α-estradiol metabolizing enzymes in cultured MCF-7 cells,” Advances in Experimental Medicine and Biology, vol. 617, pp. 625–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. A. Smiley and R. A. Khalil, “Estrogenic compounds, estrogen receptors and vascular cell signaling in the aging blood vessels,” Current Medicinal Chemistry, vol. 16, no. 15, pp. 1863–1887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. N. Cruz, S. Agewall, K. Schenck-Gustafsson, and K. Kublickiene, “Acute dilatation to phytoestrogens and estrogen receptor subtypes expression in small arteries from women with coronary heart disease,” Atherosclerosis, vol. 196, no. 1, pp. 49–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. D. Hancock, E. S. Coleman, Y. X. Tao et al., “Genistein decreases androgen biosynthesis in rat Leydig cells by interference with luteinizing hormone-dependent signaling,” Toxicology Letters, vol. 184, no. 3, pp. 169–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Gunnarsson, G. Selstam, Y. Ridderstråle, L. Holm, E. Ekstedt, and A. Madej, “Effects of dietary phytoestrogens on plasma testosterone and triiodothyronine (T3) levels in male goat kids,” Acta veterinaria Scandinavica, vol. 51, p. 51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. H. B. Patisaul, K. T. Burke, R. E. Hinkle, H. B. Adewale, and D. Shea, “Systemic administration of diarylpropionitrile (DPN) or phytoestrogens does not affect anxiety-related behaviors in gonadally intact male rats,” Hormones and Behavior, vol. 55, no. 2, pp. 319–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. S. Waleh, B. F. Cravatt, A. Apte-Deshpande, A. Terao, and T. S. Kilduff, “Transcriptional regulation of the mouse fatty acid amide hydrolase gene,” Gene, vol. 291, no. 1-2, pp. 203–210, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. C. G. Reich, M. E. Taylor, and M. M. McCarthy, “Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats,” Behavioural Brain Research, vol. 203, no. 2, pp. 264–269, 2009. View at Publisher · View at Google Scholar