Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2012, Article ID 951734, 8 pages
http://dx.doi.org/10.1155/2012/951734
Clinical Study

Prevalence of Hypertension and Diabetes and Coexistence of Chronic Kidney Disease and Cardiovascular Risk in the Population of the Republic of Moldova

1Republican Clinic Hospital, Chisinau, Moldova
2Municipal Council Health Department, Chisinau, Moldova
3Clinical Research Center for Rare Diseases “Aldo e Cele Daccò” and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Mario Negri Institute for Pharmacological Research, 24126 Bergamo, Italy
4The John Walls Renal Unit, Leicester General Hospital, Leicester LE5 4PW, UK

Received 17 September 2012; Accepted 24 October 2012

Academic Editor: Yackoob Kassim Seedat

Copyright © 2012 Igor Codreanu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, Preventing Chronic Diseases: A Vital Investment, World Health Organization, Geneva, Switzerland, 2005.
  2. Q. L. Zhang and D. Rothenbacher, “Prevalence of chronic kidney disease in population-based studies: systematic review,” BMC Public Health, vol. 8, article 117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. El Nahas, R. Barsoum, G. Eknoyan et al., “The global challenge of chronic kidney disease,” Kidney International, vol. 68, no. 6, pp. 2918–2929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. W. G. Couser, G. Remuzzi, S. Mendis, and M. Tonelli, “The contribution of chronic kidney disease to the global burden of major noncommunicable diseases,” Kidney International, vol. 80, no. 12, pp. 1258–1270, 2011. View at Publisher · View at Google Scholar
  5. C. Meisinger, A. Döring, and H. Löwel, “Chronic kidney disease and risk of incident myocardial infarction and all-cause and cardiovascular disease mortality in middle-aged men and women from the general population,” European Heart Journal, vol. 27, no. 10, pp. 1245–1250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H. L. Hillege, V. Fidler, G. F. H. Diercks et al., “Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population,” Circulation, vol. 106, no. 14, pp. 1777–1782, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Matsushita, M. van der Velde, B. C. Astor et al., “Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis,” The Lancet, vol. 375, no. 9731, pp. 2073–2081, 2010. View at Publisher · View at Google Scholar
  8. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. United Nations Development Programme, National Human Development Report, Chisinau, 2011.
  10. Highlights on health in the Republic of Moldova 2005, Who Regional Office for Europe, http://www.EURO.WHO.INT/DATA/ASSETS/PDF_FILE/0003/103566/E88552.pdf.
  11. L. MacLehose, “Health care systems in transition: Republic of Moldova,” in European Observatory on Health Care Systems, M. McKee, Ed., vol. 4, Copenhagen, Denmark, 2002. View at Google Scholar
  12. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 Report,” Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. World Health Organization, “Obesity: preventing and managing the global epidemic,” Technical Report 894, World Health Organization, Geneva, Switzerland, 2000. View at Google Scholar
  14. B. A. Fielding, D. A. Price, and C. A. Houlton, “Enzyme immunoassay for urinary albumin,” Clinical Chemistry, vol. 29, no. 2, pp. 355–357, 1983. View at Google Scholar · View at Scopus
  15. A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, “A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation,” Annals of Internal Medicine, vol. 130, no. 6, pp. 461–470, 1999. View at Google Scholar · View at Scopus
  16. I. Guessous, W. McClellan, S. Vupputuri, and H. Wasse, “Low documentation of chronic kidney disease among high-risk patients in a managed care population: a retrospective cohort study,” BMC Nephrology, vol. 10, no. 1, article 25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. B. O. Eriksen and O. C. Ingebretsen, “The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age,” Kidney International, vol. 69, no. 2, pp. 375–382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Y. Hsu, C. Iribarren, C. E. McCulloch, J. Darbinian, and A. S. Go, “Risk factors for end-stage renal disease: 25-year follow-up,” Archives of Internal Medicine, vol. 169, no. 4, pp. 342–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, and J. He, “Global burden of hypertension: analysis of worldwide data,” The Lancet, vol. 365, no. 9455, pp. 217–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Gutierrez-Padilla, M. Mendoza-Garcia, S. Plascencia-Perez et al., “Screening for CKD and cardiovascular disease risk factors using mobile clinics in Jalisco, Mexico,” American Journal of Kidney Diseases, vol. 55, no. 3, pp. 474–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Cravedi, S. Sharma, R. Flores Bravo et al., “Preventing renal and cardiovascular risk by renal function assessment: insights from a cross-sectional study in low-income countries and the US,” BMJ Open, vol. 2, no. 5, Article ID e001357, 2012. View at Publisher · View at Google Scholar
  22. E. K. Sumaili, J. M. Krzesinski, C. V. Zinga et al., “Prevalence of chronic kidney disease in Kinshasa: results of a pilot study from the Democratic Republic of Congo,” Nephrology Dialysis Transplantation, vol. 24, no. 1, pp. 117–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. T. Gansevoort, J. C. Verhave, H. L. Hillege et al., “The validity of screening based on spot morning urine samples to detect subjects with microalbuminuria in the general population,” Kidney International, Supplement, vol. 67, no. 94, pp. S-28–S-35, 2005. View at Google Scholar · View at Scopus
  24. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C. Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. S. Fox, P. Muntner, A. Y. Chen et al., “Use of evidence-based therapies in short-term outcomes of ST-segment elevation myocardial infarction and non-ST-segment elevation myocardial infarction in patients with chronic kidney disease: a report from the national cardiovascular data acute coronary treatment and intervention outcomes network registry,” Circulation, vol. 121, no. 3, pp. 357–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Tonelli, N. Wiebe, B. Culleton et al., “Chronic kidney disease and mortality risk: a systematic review,” Journal of the American Society of Nephrology, vol. 17, no. 7, pp. 2034–2047, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Barbour, L. Er, O. Djurdjev, M. Karim, and A. Levin, “Differences in progression of CKD and mortality amongst Caucasian, Oriental Asian and South Asian CKD patients,” Nephrology, Dialysis, Transplantation, vol. 25, no. 11, pp. 3663–3672, 2010. View at Google Scholar · View at Scopus
  28. B. C. Astor, S. I. Hallan, E. R. Miller, E. Yeung, and J. Coresh, “Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population,” American Journal of Epidemiology, vol. 167, no. 10, pp. 1226–1234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. B. R. Hemmelgarn, B. J. Manns, A. Lloyd et al., “Relation between kidney function, proteinuria, and adverse outcomes,” Journal of the American Medical Association, vol. 303, no. 5, pp. 423–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. WHO, Action Plan For the Global Strategy for the Prevention and Control of Noncommunicable Diseases: Prevent and Control Cardiovascular Diseases, Cancer, Chronic Respiratory Diseases and Diabetes, WHO, Geneva, Switzerland, 2008.
  31. P. Ruggenenti and G. Remuzzi, “Time to abandon microalbuminuria?” Kidney International, vol. 70, no. 7, pp. 1214–1222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. E. Raffle and J. A. M. Gray, “What screening is and is not,” in Screening: Evidence and Practice, Oxford University Press, New York, NY, USA, 1st edition, 2007. View at Google Scholar
  33. M. J. Bottomley, A. Kalachik, C. Mevada, M. O. Brook, T. James, and P. N. Harden, “Single estimated glomerular filtration rate and albuminuria measurement substantially overestimates prevalence of chronic kidney disease,” Nephron, vol. 117, no. 4, pp. c348–c352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Chen, C. C. Hsu, K. Yamagata, and R. Langham, “Challenging chronic kidney disease: experience from chronic kidney disease prevention programs in Shanghai, Japan, Taiwan and Australia,” Nephrology, vol. 15, supplement 2, pp. 31–36, 2010. View at Publisher · View at Google Scholar · View at Scopus