Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2013 (2013), Article ID 413469, 7 pages
http://dx.doi.org/10.1155/2013/413469
Clinical Study

Clinical Implications of the Change in Glomerular Filtration Rate with Adrenergic Blockers in Patients with Morning Hypertension: The Japan Morning Surge-1 Study

Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

Received 27 July 2013; Revised 16 October 2013; Accepted 16 October 2013

Academic Editor: Tomohiro Katsuya

Copyright © 2013 Seiichi Shibasaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Collins, W. G. Couser, J. H. Dirks et al., “World Kidney Day: an idea whose time has come,” Kidney International, vol. 69, no. 5, pp. 781–782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease, “Evaluation, classification, and stratification,” American Journal of Kidney Diseases, vol. 39, no. 2, pp. S1–S266, 2002. View at Google Scholar
  3. M. J. Sarnak, A. S. Levey, A. C. Schoolwerth et al., “Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention,” Circulation, vol. 108, no. 17, pp. 2154–2169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ninomiya, Y. Kiyohara, M. Kubo et al., “Chronic kidney disease and cardiovascular disease in a general Japanese population: the Hisayama Study,” Kidney International, vol. 68, no. 1, pp. 228–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Nakayama, H. Metoki, H. Terawaki et al., “Kidney dysfunction as a risk factor for first symptomatic stroke events in a general Japanese population—the Ohasama study,” Nephrology Dialysis Transplantation, vol. 22, no. 7, pp. 1910–1915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. N. S. Anavekar, J. J. V. McMurray, E. J. Velazquez et al., “Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction,” The New England Journal of Medicine, vol. 351, no. 13, pp. 1285–1295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kottgen, S. D. Russell, L. R. Loehr et al., “Reduced kidney function as a risk factor for incident heart failure: the Atherosclerosis Risk in Communities (ARIC) Study,” Journal of the American Society of Nephrology, vol. 18, no. 4, pp. 1307–1315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C.-Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” The New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Irie, H. Iso, T. Sairenchi et al., “The relationships of proteinuria, serum creatinine, glomerular filtration rate with cardiovascular disease mortality in Japanese general population,” Kidney International, vol. 69, no. 7, pp. 1264–1271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Klag, P. K. Whelton, B. L. Randall et al., “Blood pressure and end-stage renal disease in men,” The New England Journal of Medicine, vol. 334, no. 1, pp. 13–18, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Klag, P. K. Whelton, B. L. Randall, J. D. Neaton, F. L. Brancati, and J. Stamler, “End-stage renal disease in African-American and white men: 16-year MRFIT findings,” Journal of the American Medical Association, vol. 277, no. 16, pp. 1293–1298, 1997. View at Google Scholar · View at Scopus
  12. M. Tozawa, K. Iseki, C. Iseki, K. Kinjo, Y. Ikemiya, and S. Takishita, “Blood pressure predicts risk of developing end-stage renal disease in men and women,” Hypertension, vol. 41, no. 6, pp. 1341–1345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Yamagata, K. Ishida, T. Sairenchi et al., “Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study,” Kidney International, vol. 71, no. 2, pp. 159–166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Ishikawa, S. Hoshide, S. Shibasaki et al., “Relationship between morning hypertension identified by home blood pressure monitoring and brain natriuretic peptide and estimated glomerular filtration rate: the Japan morning surge 1 (JMS-1) study,” Journal of Clinical Hypertension, vol. 10, no. 1, pp. 34–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Suzuki, H. Nakamoto, H. Okada, S. Sugahara, and Y. Kanno, “Self-measured systolic blood pressure in the morning is a strong indicator of decline of renal function in hypertensive patients with non-diabetic chronic renal insufficiency,” Clinical and Experimental Hypertension, vol. 24, no. 4, pp. 249–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Marfella, P. Gualdiero, M. Siniscalchi et al., “Morning blood pressure peak, QT intervals, and sympathetic activity in hypertensive patients,” Hypertension, vol. 41, no. 2, pp. 237–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kario, T. G. Pickering, S. Hoshide et al., “Morning blood pressure surge and hypertensive cerebrovascular disease: role of the alpha adrenergic sympathetic nervous system,” American Journal of Hypertension, vol. 17, no. 8, pp. 668–675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. D. Esler, H. Krum, P. A. Sobotka et al., “Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial,” The Lancet, vol. 376, no. 9756, pp. 1903–1909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Ogihara, K. Kikuchi, H. Matsuoka et al., “The japanese society of hypertension guidelines for the management of hypertension (JSH 2009),” Hypertension Research, vol. 32, no. 1, pp. 3–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Andersen, L. Tarnow, P. Rossing, B. V. Hansen, and H.-H. Parving, “Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy,” Kidney International, vol. 57, no. 2, pp. 601–606, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Svarstad, E. Gerdts, P. Omvik, J. Ofstad, and B. M. Iversen, “Renal hemodynamic effects of captopril and doxazosin during slight physical activity in hypertensive patients with type-1 diabetes mellitus,” Kidney and Blood Pressure Research, vol. 24, no. 1, pp. 64–70, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. G. L. Bakris, R. D. Toto, P. A. McCullough, R. Rocha, D. Purkayastha, and P. Davis, “Effects of different ACE inhibitor combinations on albuminuria: results of the GUARD study,” Kidney International, vol. 73, no. 11, pp. 1303–1309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. O'Donnell, B. R. Rowe, N. Lawson, A. Horton, O. H. Gyde, and A. H. Barnett, “Comparison of the effects of an angiotensin converting enzyme inhibitor and a calcium antagonist in hypertensive, macroproteinuric diabetic patients: a randomised double-blind study,” Journal of Human Hypertension, vol. 7, no. 4, pp. 333–339, 1993. View at Google Scholar · View at Scopus
  24. J. Ishikawa, S. Hoshide, S. Shibasaki et al., “The japan morning surge-1 (JMS-1) study: protocol description,” Hypertension Research, vol. 29, no. 3, pp. 153–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Kario, Y. Matsui, S. Shibasaki et al., “An α-adrenergic blocker titrated by self-measured blood pressure recordings lowered blood pressure and microalbuminuria in patients with morning hypertension: the japan morning surge-1 study,” Journal of Hypertension, vol. 26, no. 6, pp. 1257–1265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. A. Anwar, S. Giacco, E. J. McCabe, B. E. Tendler, and W. B. White, “Evaluation of the efficacy of the Omron HEM-737 intellisense device for use on adults according to the recommendations of the Association for the Advancement of Medical Instrumentation,” Blood Pressure Monitoring, vol. 3, no. 4, pp. 261–265, 1998. View at Google Scholar · View at Scopus
  27. Y. Imai, K. Otsuka, Y. Kawano et al., “Japanese Society of Hypertension (JSH) guidelines for self-monitoring of blood pressure at home,” Hypertension Research, vol. 26, no. 10, pp. 771–782, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Imai, M. Horio, K. Nitta et al., “Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease,” Clinical and Experimental Nephrology, vol. 11, no. 1, pp. 41–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. S. Levey, K.-U. Eckardt, Y. Tsukamoto et al., “Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO),” Kidney International, vol. 67, no. 6, pp. 2089–2100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. T. T. Rosa and P. Palatini, “Clinical value of microalbuminuria in hypertension,” Journal of Hypertension, vol. 18, no. 6, pp. 645–654, 2000. View at Google Scholar · View at Scopus
  31. R. W. Schrier, R. O. Estacio, A. Esler, and P. Mehler, “Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes,” Kidney International, vol. 61, no. 3, pp. 1086–1097, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Rossing, K. J. Schjoedt, B. R. Jensen, F. Boomsma, and H.-H. Parving, “Enhanced renoprotective effects of ultrahigh doses of irbesartan in patients with type 2 diabetes and microalbuminuria,” Kidney International, vol. 68, no. 3, pp. 1190–1198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Ikeda, T. Gomi, Y. Shibuya, S. Shinozaki, Y. Suzuki, and N. Matsuda, “Add-on effect of bedtime dosing of the α1-adrenergic receptor antagonist doxazosin on morning hypertension and left ventricular hypertrophy in patients undergoing long-term amlodipine monotherapy,” Hypertension Research, vol. 30, no. 11, pp. 1097–1105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Pedrinelli, “Microalbuminuria in Hypertension,” Nephron, vol. 73, no. 4, pp. 499–505, 1996. View at Google Scholar · View at Scopus
  35. P. Palatini, P. Mormino, L. Mos et al., “Microalbuminuria, renal function and development of sustained hypertension: a longitudinal study in the early stage of hypertension,” Journal of Hypertension, vol. 23, no. 1, pp. 175–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Pedrinelli, G. Penno, G. Dell'Omo et al., “Microalbuminuria and transcapillary albumin leakage in essential hypertension,” Hypertension, vol. 34, no. 3, pp. 491–495, 1999. View at Google Scholar · View at Scopus
  37. A. J. Apperloo, D. De Zeeuw, and P. E. De Jong, “A short-term antihypertensive treatment-induced fall in glomerular filtration rate predicts long-term stability of renal function,” Kidney International, vol. 51, no. 3, pp. 793–797, 1997. View at Google Scholar · View at Scopus
  38. G. N. Jyothirmayi, I. Alluru, and A. S. Reddi, “Doxazosin prevents proteinuria and glomerular loss of heparan sulfate in diabetic rats,” Hypertension, vol. 27, no. 5, pp. 1108–1114, 1996. View at Google Scholar · View at Scopus
  39. P. Van Brummelen, K. Jie, and P. A. Van Zwieten, “α-Adrenergic receptors in human blood vessels,” British Journal of Clinical Pharmacology, vol. 21, no. 1, pp. 33–39, 1986. View at Google Scholar · View at Scopus
  40. M. T. James, B. R. Hemmelgarn, N. Wiebe et al., “Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study,” The Lancet, vol. 376, no. 9758, pp. 2096–2103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Viazzi, G. Leoncini, N. Conti et al., “Combined effect of albuminuria and estimated glomerular filtration rate on cardiovascular events and all-cause mortality in uncomplicated hypertensive patients,” Journal of Hypertension, vol. 28, no. 4, pp. 848–855, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Ruggenenti, E. Perticucci, P. Cravedi et al., “Role of remission clinics in the longitudinal treatment of CKD,” Journal of the American Society of Nephrology, vol. 19, no. 6, pp. 1213–1224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. L. Heerspink and D. de Zeeuw, “Composite renal endpoints: was ACCOMPLISH accomplished?” The Lancet, vol. 375, no. 9721, pp. 1140–1142, 2010. View at Publisher · View at Google Scholar · View at Scopus